Impact production of C02 by the Cretaceous/Tertiary extinction bolide and the resultant heating of the Earth

Abstract

EVIDENCE at the Cretaceous/Tertiary boundary suggests that the proposed 'extinction' bolide1 struck a continental or shallow marine terrane. This evidence includes: shocked quartz and feld-spar grains found in the boundary layer inherited from a range of rock types2,3; a high 87Sr/86Sr ratio in some planktonic fossils4 which could reflect continental-derived Sr (ref. 5); and evidence that the platinum-group-element-rich clay layer is underlain (at some localities) by a deposit of possible tsunamic origin6'7. These observations and data demonstrate that sea level at the end of the Cretaceous was 150-200 m higher than at present, suggesting the possibility that the extinction bolide struck a shallow marine carbonate-rich sedimentary section. Here we show that the impact of such a bolide (5 km in radius) onto a carbonate-rich terrane would increase the CO2 content of the atmosphere by a factor of two to ten. Additional dissolution of CO2 from the ocean's photic zone could release much larger quantities of CO2. The impact-induced release of CO2, by itself, would enhance atmospheric greenhouse heating and give rise to a worldwide increase in tem-perature from 2 K to 10 K for periods of 104 to 105 years.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Alvarez, L. E., Alvarez, W., Asaro, F. & Michel, H. V. Science 208, 1095–1108 (1980).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Owen, M. R. & Anders, M. H. Nature 334, 145–147 (1988).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Bohor, B. F., Foord, E. E., Modreski, P. J. & Triplehorn, D. M. Science 224, 867–869 (1984).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Hess, J., Bender, M. L. & Schilling, J.-G. Science 231, 979–984 (1986).

    ADS  CAS  Article  Google Scholar 

  5. 5

    MacDougall, J. D. Science 239, 485–487 (1988).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Bourgeois, J., Hansen, T. A., Wiberg, P. L. & Kauffman, E. G. Science 241, 567–570 (1988).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Hildebrand, A. R. & Boynton, W. V. Abstr. Conf. on Global Catastrophies in Earth History, 78–79 (Lunar and planet. Inst., 1988).

    Google Scholar 

  8. 8

    Toon, O. B. et al. Geol. Soc. Am. spec. Pap. 190 187–200 (1982).

  9. 9

    Gerstl, S. A. W. & Zardecki, A. Geol. Soc. Am. spec. Pap. 190 201–210 (1982).

  10. 10

    Thompson, S. L., Ramaswamy, V. & Covey, C. J. geophys. Res. 92, 10942–10960 (1987).

    ADS  Article  Google Scholar 

  11. 11

    Wolbach, W. S., Lewis, R. S. & Anders, E. Science 230, 167–170 (1985).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Emiliani, C., Kraus, E. B. & Shoemaker, E. M. Earth Planet. Sci. Lett. 55, 317–324 (1981).

    ADS  Article  Google Scholar 

  13. 13

    Turco, R. P. et al. Science 214, 19–23 (1981).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Lewis, J. S., Watkins, G. H., Hartman, H. & Prinn, R. Geol. Soc. Am. spec. Pap. 190 215–222 (1982).

  15. 15

    O'Keefe, J. D. & Ahrens, T. J. Geol. Soc. Am. spec. Pap. 190 103–120 (1982).

  16. 16

    Prinn, R. G. & Fegley, B. Earth planet. Sci. Lett. 83, 1–15 (1987).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Lange, M. A. & Ahrens, T. J. Earth planet. Sci. Lett. 77, 409–418 (1986).

    ADS  CAS  Article  Google Scholar 

  18. 18

    O Keefe, J. D. & Ahrens, T. J., Proc. Lunar Sci. Conf. 8th 3357–3375 (1977).

  19. 19

    Poldervaart, A. Geol. Soc. Am. spec. Pap. 62 119–144 (1955).

  20. 20

    Holland, H. D. Chemistry of the Atmosphere and Oceans (Wiley, New York, 1978).

    Google Scholar 

  21. 21

    Roddy, D. J. et al. Int. J. Impact Engng 5, 525–541 (1987).

    Article  Google Scholar 

  22. 22

    O'Keefe, J. D. & Ahrens, T. J. Abstr. Lunar planet. Sci. XIX, 887–888 (1988).

    ADS  Google Scholar 

  23. 23

    Walker, J. C. G., Hays, P. B. & Kastings, J. F. J. geophys. Res. 86, 9776–9782 (1981).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Broecker, W. S. & Peng, T.-H. Tracers in the Sea 690 (Eldigo, New York, 1982).

    Google Scholar 

  25. 25

    Berner, R. A., Lasaga, A. C. & Garrels, R. M. Am. J. Sci. 283, 641–683 (1983).

    ADS  CAS  Article  Google Scholar 

  26. 26

    Hsü, K. J., McKenzie, J. A. & He, Q. X. Geol. Soc. Am. spec. Pap. 190 317–328 (1982).

  27. 27

    Kasting, J. F. & Ackerman, J. P. Science 234, 1383–1385 (1986).

    ADS  CAS  Article  Google Scholar 

  28. 28

    Holser, W. T., Schidlowski, M., Mackenzie, F. T. & Maynard, J. B. in Chemical Cycles in the Evolution of the Earth (eds Gregor, C. B., Garrels, R. M., Mackenzie, F. T. & Maynard, J. B.) 105–173 (Wiley, New York, 1988).

    Google Scholar 

  29. 29

    Zachos, J. C. & Arthur, M. A. Paleoceanography 1, 5–26 (1988).

    ADS  Article  Google Scholar 

  30. 30

    Gerstel, J., Thunell, R. C., Zachos, J. C. & Arthur, M. A. Paleoceanography 1, 97–117 (1986).

    ADS  Article  Google Scholar 

  31. 31

    McLean, D. M. Science 201, 401–406 (1978).

    ADS  CAS  Article  Google Scholar 

  32. 32

    Hsü, K. J. & McKenzie, J. A. Geophys. Monogr. 32 (Am. Geophys. Un., Washington DC, 1985).

    Google Scholar 

  33. 33

    Hut, P. et al. Nature 329, 118–126 (1987).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

O'Keefe, J., Ahrens, T. Impact production of C02 by the Cretaceous/Tertiary extinction bolide and the resultant heating of the Earth. Nature 338, 247–249 (1989). https://doi.org/10.1038/338247a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.