Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A numerical experiment on the chaotic behaviour of the Solar System

Abstract

LAPLACE and Lagrange made an essential contribution to the study of the stability of the Solar System by proving analytically that, to first order in the masses, inclinations and eccentricities of their orbits, the planets move quasiperiodically. Since then, many analytic quasiperiodic solutions have been sought to higher order1–10.1 have recently constructed an extensive analytic system of averaged differential equations containing the secular evolution of the orbits of the eight main planets, accurate to second order in the planetary masses and to fifth order in eccentricity and inclination, and including corrections from general relativity and the Moon8–10. Here I describe the results of a numerical integration of this system, extending backwards over 200 million years. The solution is chaotic, with a maximum Lyapunov exponent that reaches the surprisingly large value of 1/5 Myr–1. The motion of the Solar System is thus shown to be chaotic, not quasiperiodic. In particular, predictability of the orbits of the inner planets, including the Earth, is lost within a few tens of millions of years. This does not mean that after such a short timespan we will see catastrophic events such as a crossing of the orbits of Venus and Earth; but the traditional tools of quantitative celestial mechanics (numerical integrations or analytical theories), which aim at unique solutions from given initial conditions, will fail to predict such events. The problem of the stability of the Solar System will have to be set up again, and the qualitative methods initiated by Poincare definitely need to replace quantitative methods in this analysis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Hill, G. W. Astr. J. 17(11), 81–87 (1897).

    ADS  Article  Google Scholar 

  2. 2

    Brouwer, D. & Van Woerkom, A. J. J. Astr. Pap. Am. Ephem. 13(2), 81–107 (1950).

    Google Scholar 

  3. 3

    Brumberg, V. A. Analytical Algorithms of Celestial Mechanics (Nauka, Moscow; in Russian) (1980).

    MATH  Google Scholar 

  4. 4

    Bretagnon, P. Astr. Astrophys. 30, 141–154 (1974).

    ADS  Google Scholar 

  5. 5

    Duriez, L. Astr. Astrophys. 54, 93–112 (1977).

    ADS  Google Scholar 

  6. 6

    Duriez, L. thesis, Lille (1979).

  7. 7

    Message, P. J. Celes. Mech. 26, 25–39 (1982).

    ADS  MathSciNet  Article  Google Scholar 

  8. 8

    Laskar, J. thesis, Observatoire de Paris (1984).

  9. 9

    Laskar, J. Astr. Astrophys. 144, 133–146 (1985).

    ADS  Google Scholar 

  10. 10

    Laskar, J. Astr. Astrophys. 157, 59–70 (1986).

    ADS  Google Scholar 

  11. 11

    Poincaré, H. Méthodes Nouvelles de la Mécanique Celeste Vol. 1 (Gauthier-Villars, Paris, 1892).

    MATH  Google Scholar 

  12. 12

    Poincaré, H. Méthodes Nouvelles de la Mécanique Celeste Vol. 2 (Gauthier-Villare, Paris 1893).

    MATH  Google Scholar 

  13. 13

    Arnold, V. Méthodes Mathématiques de la Mécanique Classique (MIR, Moscow, 1976).

    Google Scholar 

  14. 14

    Cohen, C. J., Hubbard, E. C. & Oesterwinter, C. Astr. Pap. Am. Ephem. 22(1), 1–42 (1973).

    Google Scholar 

  15. 15

    Kinoshita, H. & Nakai, H. Celes. Mech. 34, 203–217 (1984).

    ADS  Article  Google Scholar 

  16. 16

    Milani, A., Nobili, A. M., Fox, K. & Carpino, M. Nature 319, 386–388 (1986).

    ADS  Article  Google Scholar 

  17. 17

    Applegate, J. H., Douglas, M. R., Gursel, Y., Sussman, G. J. & Wisdom, J. Astr. J. 92, 176–194 (1986).

    ADS  Article  Google Scholar 

  18. 18

    Carpino, M., Milani, A. & Nobili, A. M. Astr. Astrophys. 181, 182–194 (1987).

    ADS  Google Scholar 

  19. 19

    Sussman, G. J. & Wisdom, J. Science 241, 433–437 (1988).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Newhall, X. X., Standish, E. M. & Willians, J. G. Astr. Astrophys. 125, 150–167 (1983).

    ADS  Google Scholar 

  21. 21

    Laskar, J. Astr. Astrophys. 198, 341–362 (1988).

    ADS  Google Scholar 

  22. 22

    Laskar, J. in Proc. 10th ERAM of the IAU Vol. 3 (ed. Sidlichovsky, M.) 95–98 (1987).

    Google Scholar 

  23. 23

    Nobili, A. M., Carpino, M. & Milani, A., Astr. Astrophys. (in the press).

  24. 24

    Bennettin, G., Galgani, L., Giorgilli, A. & Strelcyn, J. M. Meccanica March 1980, 9–30.

  25. 25

    Froeschle, Cl. in Stability of the Solar Systems and its Minor Natural and Artificial Bodies (ed. Szebehely, V. G.) 265–282 (Reidel, Dordrecht, 1985).

    Book  Google Scholar 

  26. 26

    Berger, A., Imbrie, J., Hays, J., Kukla, G. & Saltzman, B. (eds) Milankovitch and Climate (Reidel, Dordrecht, 1984).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Laskar, J. A numerical experiment on the chaotic behaviour of the Solar System. Nature 338, 237–238 (1989). https://doi.org/10.1038/338237a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing