Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A global assessment of natural sources of atmospheric trace metals

Abstract

A PROPER inventory of atmospheric emissions from natural sources is basic to our understanding of the atmospheric cycle of the trace metals (and metalloids), and is also needed for assessing the extent of regional and global pollution by toxic metals1. It is generally presumed that the principal natural sources of trace metals in the atmosphere are wind-borne soil particles, volcanoes, seasalt spray and wild forest fires2–6. Recent studies have shown, however, that particulate organic matter is the dominant component of atmospheric aerosols in non-urban areas7–10 and that over 60% of the airborne trace metals in forested regions can be attributed to aerosols of biogenic origin11,12. Here I estimate that biogenic sources can account for 30–50% of the global baseline emissions of trace metals. For most of the toxic metals, the natural fluxes are small compared with emissions from industrial activities, implying that mankind has become the key agent in the global atmospheric cycle of trace metals and metalloids.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Nriagu, J. O. & Pacyna, J. M. Nature 333, 134–139 (1988).

    ADS  CAS  Article  Google Scholar 

  2. Pacyna, J. M. Adv. envir. Sci. Technol. 17, 33–52 (1986).

    CAS  Google Scholar 

  3. Walsh, P. R., Duce, R. A. & Fasching, J. L. J. geophys Res. 84, 1719–1726 (1979).

    ADS  CAS  Article  Google Scholar 

  4. Jaworowski, Z., Bysiek, M. & Kownacka, L. Geochim. cosmochim. Acta 45, 2185–2199 (1981).

    ADS  CAS  Article  Google Scholar 

  5. Patterson, C. C. & Settle, D. M. Geochim. cosmochim. Acta 51, 675–681 (1987).

    ADS  CAS  Article  Google Scholar 

  6. Lantzy, R. J. & Mackenzie, F. T. Geochim. cosmochim. Acta 43, 511–523 (1979).

    ADS  CAS  Article  Google Scholar 

  7. Duce, R. A. et al. Rev. Geophys. 21, 925–952 (1983).

    ADS  Article  Google Scholar 

  8. Zenchelsky, S. & Youssefi, M. Rev. Geophys. 17, 459–463 (1979).

    ADS  CAS  Article  Google Scholar 

  9. Talbot, R. W., Andreae, M. O., Andreae, T. W. & Harriss, R. C. J. geophys. Res. 93, 1499–1508 (1988).

    ADS  CAS  Article  Google Scholar 

  10. Artaxo, P., Storms, H., Bruynseels, F. & Grieken, R. V. J. geophys. Res. 93, 1605–1615 (1988).

    ADS  CAS  Article  Google Scholar 

  11. Orsini, C., Artaxo, P. & Tabacnicks, M. Atmos. Envir. 16, 2177–2181 (1982).

    CAS  Article  Google Scholar 

  12. Zoller, W. H. in Changing Metals Cycles and Human Health (ed. Nriagu, J. O.) 27–41 (Springer, Berlin, 1983).

    Google Scholar 

  13. Buat-Menard, P. & Arnold, M. Geophys Res. Lett. 5, 245–248 (1978).

    ADS  CAS  Article  Google Scholar 

  14. Mosher, B. W. & Duce, R. A. J. geophys. Res. 92, 13289–13298 (1987).

    ADS  CAS  Article  Google Scholar 

  15. Lambert G., Le Cloarec, M. F. & Pennisi, M. Geochim. cosmochim. Acta 52, 39–42 (1988).

    ADS  CAS  Article  Google Scholar 

  16. Berresheim, H. & Jaeschke, W. J. geophys. Res. 88, 3732–3740 (1983).

    ADS  CAS  Article  Google Scholar 

  17. Olmez, I., Finnegan, D. L. & Zoller, W. H. J. geophys. Res. 91, 653–663 (1986).

    ADS  CAS  Article  Google Scholar 

  18. Lamb, B., Guenther, A., Guy, D. & Westberg, H. Atmos Envir. 21, 1695–1705 (1987).

    CAS  Article  Google Scholar 

  19. Zimmerman, P. R., Greenberg, J. P. & Westberg, C. E. J. geophys. Res. 93, 1407–1416 (1988).

    ADS  CAS  Article  Google Scholar 

  20. Rasmussen, R. A. & Khalil, M. A. K. J. geophys. Res. 93, 1417–1421 (1988).

    ADS  CAS  Article  Google Scholar 

  21. Martell, E. A. & Smith, R. M. Critical Stability Constants (Plenum, New York, 1975–77).

    Google Scholar 

  22. Piotrowicz, S. R., Ray, B. J., Hoffman, G. L. & Duce, R. A. J. geophys. Res. 77, 5243–5254 (1972).

    ADS  CAS  Article  Google Scholar 

  23. Schmidt, J. A. & Andren, A. W. Adv. envir. Sci. Technol. 14, 81–103 (1984).

    CAS  Google Scholar 

  24. Toxic Metals in the Atmosphere (eds. Nriagu, J. O. & Davidson) (Wiley, New York, 1986).

  25. Lindquist, O. & Rhode, H. Tellus 37B, 136–159 (1985).

    ADS  Article  Google Scholar 

  26. Boutron, C. F. & Patterson, C. C. J. geophys. Res. 92, 8454–8464 (1986).

    ADS  Article  Google Scholar 

  27. Lien, A. Yu. in The Global Biogeochemical Sulfur Cycle (eds Ivanov, M. V. & Freney, J. R.) 95–127 (Wiley, New York, 1983).

    Google Scholar 

  28. Wiesel, C. P., Duce, R. A., Fasching, J. L. & Heaton, R. W. J. geophys. Res. 89, 11607–11617 (1984).

    ADS  Article  Google Scholar 

  29. Nriagu, J. O. Nature 379, 409–411 (1979).

    ADS  Article  Google Scholar 

  30. Chivers, D. C. & Peterson, P. J. in Lead, Mercury, Cadmium and Arsenic in the Environment (eds Hutchinson, T. C. & Meema, K. M.) 279–301 (Wiley, New York, 1987).

    Google Scholar 

  31. Fitzgerald, W. F. in The Role of Air-Sea Exchange in Geochemical Cycling (ed. Buat-Menard, P.) 363–408 (Reidel, Dordrecht, 1986).

    Book  Google Scholar 

  32. Prospero, J. M. et al. Rev. Phys. 21, 1607–1629 (1983).

    ADS  CAS  Google Scholar 

  33. Bowen, H. J. M. Environmental Chemistry of the Elements (Academic, London, 1979).

    Google Scholar 

  34. Ure, A. M. & Berrow, M. L. in Environmental Chemistry (ed. Bowen, H. J. M.) Vol. 2, 94–205 (Royal Soc. Chem., London, 1982).

    Book  Google Scholar 

  35. Monahan, E. C. in The Role of Sea-Air Exchange in Geochemical Cycling (ed. Buat-Menard, p) 129–163 (Reidel, Dordrecht, 1986).

    Book  Google Scholar 

  36. Bruland, K. W. & Frank, R. P. in Trace Metals in Sea Water (eds Wong, C. S., Boyle, E., Bruland, K. W., Burton, D. & Goldberg, E.) 415–426 (Plenum, New York, 1983).

    Google Scholar 

  37. Boyle, E. A. & Huested, S. S. in Trace Metals in Sea Water (eds Wong, C. S., Boyle, E., Bruland, K. W., Burton, D. & Goldberg, E.) 379–394 (Plenum, New York, 1983).

    Book  Google Scholar 

  38. Gill, G. A. & Fitzgerald, W. F. Geochim. cosmochim. Acta 52, 1719–1728 (1988).

    ADS  CAS  Article  Google Scholar 

  39. Suzuki, Y. & Sugimura, Y. in Marine and Estuarine Geochemistry (eds Sigleo, A. C. & Hattori, A.) 259–273 (Lewis, Chelsea, Ann. Arbor, 1985).

    Google Scholar 

  40. Jeandel, C., Caisso, M. & Minster, J. F. Mar. Chem. 21, 51–74 (1987).

    CAS  Article  Google Scholar 

  41. Jickells, T. D. & Burton, J. D. Mar. Chem. 23, 131–144 (1988).

    CAS  Article  Google Scholar 

  42. Duce, R. A. et al. in Marine Pollutant Transfer (eds Windon, H. & Duce, R. A.) 77–119 (D. C. Health, Lexington, Mass., 1976).

    Google Scholar 

  43. Heaton, R. W. thesis, Univ. of Rhode Island (1986).

  44. Cachier, H., Buat-Menard, P. & Fontugne, M. Tellus 38B, 161–177 (1986).

    ADS  CAS  Article  Google Scholar 

  45. Houghton, R. A., Schlesinger, W. H., Brown, S. & Richards, J. F. in Atmospheric Carbon Dioxide and the Global Carbon Cycle (ed. Trabalka, J. R.) 114–139 (Office of Energy Research, US Dept of Energy, Washington, D C, Report no. DOE/ER-0239, 1985).

    Google Scholar 

  46. Andreae, M. O. et al. J. geophys. Res. 93, 1509–1527 (1988).

    ADS  CAS  Article  Google Scholar 

  47. Ajtay, G. L., Ketner, P. & Duvigneaud, P. in Global Carbon Cycle (eds Bolin, B., Degens, E. T., Kempe, S. & Ketner, P.) 129–182 (Wiley, New York, 1979).

    Google Scholar 

  48. Curtin, G. C., King, H. D. & Mosier, E. L. J. geochem. Explor. 3, 245–263 (1974).

    CAS  Article  Google Scholar 

  49. Cofer, W. R. et al. J. geophys. Res. 93, 5207–5212 (1988).

    ADS  CAS  Article  Google Scholar 

  50. Brown, S. & Hugo, A. E. Science 223, 1290–1293 (1984).

    ADS  CAS  Article  Google Scholar 

  51. Andreae, M. O. & Raemdonck, H. Science 221, 744–747 (1983).

    ADS  CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nriagu, J. A global assessment of natural sources of atmospheric trace metals. Nature 338, 47–49 (1989). https://doi.org/10.1038/338047a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/338047a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing