Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Evolutionary pressures on planktonic production of atmospheric sulphur

Abstract

Dimethylsulphide (DMS), produced by marine phytoplankton1–5, has been proposed as the major source of cloud condensation nuclei (CCN) in the remote marine atmosphere, and as an important factor in global climate1. Charlson et al.1 suggested that climate modulation and altruism may have been significant factors in the evolution of DMS production by marine phytoplankton. These proposals have led to a re-examination of the relationship between the Earth's biota and climate6–11. Calculations of relative evolutionary pressure in models of individual selection12 and group selection13–17 suggest that neither climate modulation nor altruism could have been the primary factors in the evolution of mid-ocean DMS production. Although a DMS/climate feedback loop may have a role in modulating fluctuations in the Earth's climate1,11, the explanation for mid-ocean DMS production can be found primarily in selection based on local interactions, for example, osmoregulation2,5, and not in evolutionary feedbacks from proposed climate modulation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Charlson, R. J., Lovelock, J. E., Andreae, M. O. & Warren, S. G. Nature 326, 655–661 (1987).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Andreae, M. O. The Role of Air-Sea Exchange in Geochemical Cycling (ed. Buat-Menard,P.) 331–362 (Reidel, Dordrecht, 1987).

    Google Scholar 

  3. 3

    Dacey, J. W. H. & Wakeham, S. G. Science 233, 1314–1316 (1986).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Nguyen, B. C. et al. Mar. Chem. 24, 133–141 (1988).

    Article  Google Scholar 

  5. 5

    Vairavamurthy, E., Andreae, M. O. & Iverson, R. L. Limnol. Oceanogr. 30, 59–70 (1985).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Kerr, R. A. Science 240, 393–395 (1988).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Lindley, D. Nature 332, 483–484 (1988).

    ADS  Article  Google Scholar 

  8. 8

    Rampino, M. R. & Volk, T. Nature 332, 63–65 (1988).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Schwartz, S. E. Nature 336, 441–445 (1988).

    ADS  Article  Google Scholar 

  10. 10

    Legrand, M. R., Delmas, R. J. & Charlson, R. J. Nature 334, 418–420 (1988).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Bates, T. S., Charlson, R. J. & Gammon, R. H. Nature 329, 319–321 (1988).

    ADS  Article  Google Scholar 

  12. 12

    Maynard Smith, J. Evolution and the Theory of Games (Cambridge Univ. Press, London, 1982).

    Book  Google Scholar 

  13. 13

    Charnov, E. L. & Krebs, J. R. Am. Nat. 109, 107–112 (1975).

    Article  Google Scholar 

  14. 14

    Wilson, D. S. Proc. natn. Acad. Sci. U.S.A. 72, 143–146 (1975).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Eshel, I. & Cohen, D. Population Genetics and Ecology (eds Karlin, S. & Nevo, E.) 537–546 (Academic, New York, 1976).

    Google Scholar 

  16. 16

    Nunney, L. Am. Nat. 126, 212–230 (1985).

    Article  Google Scholar 

  17. 17

    Harpending, H. & Rogers, A. J. theor. Biol 127, 51–61 (1987).

    CAS  Article  Google Scholar 

  18. 18

    Hamilton, W. D. Biosocial Anthropology (ed. Fox, R.) 133–155 (Wiley, New York, 1975).

    Google Scholar 

  19. 19

    Uyenoyama, M. & Feldman, M. W. Theor. Pop. Biol. 17, 380–414 (1980).

    CAS  Article  Google Scholar 

  20. 20

    Hulbert, E. M. Limnol. Oceanogr. 7, 307–315 (1962).

    ADS  Article  Google Scholar 

  21. 21

    Wright, S. Ecology 26, 415–419 (1945).

    Article  Google Scholar 

  22. 22

    Coakley, J. A., Bernstein, R. L. & Durkee, P. A. Science 237, 1020–1022 (1987).

    ADS  Article  Google Scholar 

  23. 23

    Broecker, W. S. & Peng, T. H. Tracers in the Sea (Eldigio, Palisades, New York, 1982).

    Google Scholar 

  24. 24

    Martin, J. H. & Fitzwater, S. E. Nature 331, 341–343 (1988).

    ADS  CAS  Article  Google Scholar 

  25. 25

    Strathmann, R. R. Limnol. Oceanogr. 12, 411–418 (1967).

    ADS  CAS  Article  Google Scholar 

  26. 26

    Eppley, R. W. Fish. Bull. 70, 1063–1085 (1972).

    Google Scholar 

  27. 27

    Rogers, R. R. A Short Course in Cloud Physics (Pergamon, Oxford, 1976).

    Google Scholar 

  28. 28

    Garrels, R. M., Mackenzie, F. T. & Hunt, C. Chemical Cycles and the Global Environment (Kaufmann, Los Altos, 1975).

    Google Scholar 

  29. 29

    Calkins, J. The Role of Solar Ultraviolet Radiation in Marine Ecosystems (Plenum, New York, 1982).

    Book  Google Scholar 

  30. 30

    Goldman, J. C. & Carpenter, E. J. Limnol. Oceangr. 19, 756–766 (1974).

    ADS  Article  Google Scholar 

  31. 31

    Rhee, G. Y. & Gotham, I. J. Limnol. Oceanogr. 26, 635–648 (1981).

    ADS  CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Caldeira, K. Evolutionary pressures on planktonic production of atmospheric sulphur. Nature 337, 732–734 (1989). https://doi.org/10.1038/337732a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing