Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Three-dimensional micromagnetic modelling of ferromagnetic domain structure

Abstract

The fidelity of magnetic recording materials (whether they be synthetic crystals on a recording tape, or natural crystals in rocks recording changes in the Earth's magnetic field) depends on the uniformity of their magnetic structure. Such structure is determined by minimizing the energies arising from atomic magnetic dipole interactions. Previous micromagnetic models of coupled spin structures have contained well defined constraints to make the calculations tractable. By using a supercomputer, we have been able to perform unconstrained calculations of minimum energy structures for cubic assemblies of up to 22×22×22 exchange-coupled spins. The critical size for transformation from a uniform single-domain structure to a non-uniform three-dimensional structure is about 0.1 µm for magnetite, as found previously from one-dimensional modelling. However, a variety of different non-uniform structures are possible, with energies and magnetic moments much less than those of conventional lamellar domains. The predicted moments of unweighted combinations of these states agree well with experimental measurements on magnetite in the size range 0.08-0.5 μm. Surface spin structures are such as to minimize flux leakage out of the particle and might be misleadingly imaged by the Bitter colloid technique as indicating a single-domain state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Landau, L. D. & Lifshitz, E. M. Phys. Z. Sowjet. 8, 153–167 (1935).

    Google Scholar 

  2. Kittel, C. Phys. Rev. 70, 965–971 (1946).

    Article  ADS  CAS  Google Scholar 

  3. Amar, H. J. appl. Phys. 28, 732–733 (1957).

    Article  ADS  CAS  Google Scholar 

  4. Brown, W. F. & LaBonte, A. E. J. appl. Phys. 36, 1380–1386 (1965).

    Article  ADS  Google Scholar 

  5. Stapper, C. H. J. appl. Phys. 40, 798–802 (1969).

    Article  ADS  Google Scholar 

  6. LaBonte, A. E. J. appl. Phys. 40, 2450–2458 (1969).

    Article  ADS  CAS  Google Scholar 

  7. Aharoni, A. & Jakubovics, J. P. Phil. Mag. B 53, 133–145 (1986).

    Article  CAS  Google Scholar 

  8. Moskowitz, B. M. & Banerjee, S. K. IEEE Trans., MAG 15, 1241–1246 (1979).

    Article  ADS  Google Scholar 

  9. Moon, T. & Merrill, R. T. Phys. Earth planet. Inter. 34, 186–194 (1984).

    Article  ADS  Google Scholar 

  10. Enkin, R. J. & Dunlop, D. J. J. geophys. Res. 92, 12726–12740 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Brown, W. F. Micromagnetics 32–36 (Kreiger, New York, 1978).

    Google Scholar 

  12. Moskowitz, B. M. & Halgedahl, S. L. J. geophys. Res. 92, 10667–10682 (1987).

    Article  ADS  Google Scholar 

  13. Heider, F., Dunlop, D. J. & Sugiura, N. Science 236, 1287–1290 (1987).

    Article  ADS  CAS  Google Scholar 

  14. Fletcher, E. J. & O'Reilly, W. J. Phys. C7, 171–178 (1974).

    ADS  CAS  Google Scholar 

  15. Heider, F. & Williams, W. Geophys. Res. Lett. 15, 184–187 (1988).

    Article  ADS  CAS  Google Scholar 

  16. Rhodes, P. & Rowlands, G. Proc. Leeds phil. lit. Soc. Sci. Sect. 6, 191–210 (1954).

    Google Scholar 

  17. Dunlop, D. J., Enkin, R. J. & Tjan, E. J. geophys. Res. (submitted).

  18. Butler, R. & Banerjee, S. K. J. geophys. Res. 80, 4049–4058 (1975).

    Article  ADS  CAS  Google Scholar 

  19. Dunlop, D. J. Phys. Earth planet. Inter. 46, 100–119 (1987).

    Article  ADS  CAS  Google Scholar 

  20. Levi, S. & Merrill, R. T. J. geophys. Res. 83, 309–323 (1978).

    Article  ADS  CAS  Google Scholar 

  21. Dunlop, D. J. J. geophys. Res. 78, 1780–1793 (1973).

    Article  ADS  Google Scholar 

  22. Özdemir, Ö. & Banerjee, S. K. Earth planet. Sci. Lett. 59, 393–403 (1982).

    Article  ADS  Google Scholar 

  23. Schmidbauer, E. & Veitch, R. J. J. Geophys. 48, 148–152 (1980).

    CAS  Google Scholar 

  24. Moskowitz, B. M., Frankel, R. B., Flanders, P. J., Blakemore, R. P., Schwartz, B. B. J. Magn. magn. Mat. 73, 273–288 (1988).

    Article  ADS  Google Scholar 

  25. Dunlop, D. J. & Argyle, K. S. Eos 69, 1165 (1988).

    Google Scholar 

  26. Fredkin, D. R. & Koehler, T. R. IEEE Trans. Magnetics MAG-23, 3385–3387 (1987).

    Article  ADS  Google Scholar 

  27. Zhu, J.-G. & Bertram, H. N. J. appl. Phys. 63, 3248–3253 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, W., Dunlop, D. Three-dimensional micromagnetic modelling of ferromagnetic domain structure. Nature 337, 634–637 (1989). https://doi.org/10.1038/337634a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/337634a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing