Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence for a decline in the atmospheric accumulation rate of CHCIF2 (CFC-22)

Abstract

Concern that emissions of fully halogenated hydrocarbons may deplete stratospheric ozone through chlorine-catalysed destruction1–3 has prompted a search for safer chemicals. CHCIF2 (CFC-22) is a promising substitute as it contains only a single chlorine atom and is partially removed in the troposphere by reactions with hydroxyl radicals (OH) 4. Recognizing these facts, CFC-22 has been excluded from the controls under the Montreal Protocol29. The possibility of rapidly increasing use of CFC-22 suggests a need for careful atmospheric monitoring, especially as the atmospheric lifetime of CFC-22 is long but uncertain (12–28 yr (refs 3, 5)) and absorption by the strong CFC-22 infrared bands could contribute to greenhouse warming6,7. Here we report atmospheric CFC-22 measurements derived from ground-based solar spectra recorded between December 1980 and May 1988 which show that the CFC-22 total column increased at an average annual exponential rate of 7.8% ± 1.0% (2σ). Compared with other atmospheric data, these measurements indicate that CFC-22 is increasing at a more rapid rate than either CFC-11 or CFC-12, the two most abundant chlorofluorocarbons, but that the rate of CFC-22 increase is likely to have declined over the past few years.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Molina, M. J. & Rowland, F. S. Nature 249, 810–812 (1974).

    Article  ADS  CAS  Google Scholar 

  2. Rowland, F. S. & Molina, M. J. Rev. Geophys. Space Phys. 13, 1–35 (1975).

    Article  ADS  CAS  Google Scholar 

  3. Wuebbles, D. J. J. geophys. Res. 88, 1433–1443 (1983).

    Article  ADS  CAS  Google Scholar 

  4. Natn. Acad. Sci. Stratospheric Ozone Depletion by Halocarbons: Chemistry and Transport (Natn. Acad. Sci., Washington, DC, 1979).

  5. World Met. Org. Rep. No. 11, Geneva (1981).

  6. Ramanathan, V., Cicerone, R. J., Singh, H. B. & Kiehl, J. T. J. geophys. Res. 90, 5547–5566 (1985).

    Article  ADS  CAS  Google Scholar 

  7. Varanasi, P. & Chudamani, S. J. geophys. Res. 93, 1666–1668 (1988).

    Article  ADS  CAS  Google Scholar 

  8. WMO/NASA Atmospheric Ozone 1985; Assessment of Our Understanding of the Processes Controlling its Present Distribution and Change World Met. Org. Global Research and Monitoring Proj. Rep. No. 16, Ch. 3 (1986).

  9. Rasmussen, R. A., Khalil, M. A. K., Penkett, S. A. & Prosser, N. J. D. Geophys. Res. Lett. 7, 809–812 (1980).

    Article  ADS  CAS  Google Scholar 

  10. Khalil, M. A. K. & Rasmussen, R. A. Nature 292, 823–824 (1981).

    Article  ADS  CAS  Google Scholar 

  11. Fabian, P. in The Handbook of Environmental Chemistry, Vol. 4/Part A (ed. Hutzinger, O.) 24–51 (Springer, Berlin & Heidelberg, 1986).

    Google Scholar 

  12. Fabian, P. et al. in Proc. Quadrennial Ozone Symp. Göttingen, West Germany (in the press).

  13. Rinsland, C. P. et al. J. geophys. Res. 87, 11119–11125 (1982).

    Article  ADS  Google Scholar 

  14. Rinsland, C. P., Boughner, R. E., Larsen, J. C., Stokes, G. M. & Brault, J. W. J. geophys. Res. 89, 9613–9622 (1984).

    Article  ADS  CAS  Google Scholar 

  15. Rinsland, C. P., Levine, J. S. & Miles, T. Nature 318, 245–249 (1985).

    Article  ADS  CAS  Google Scholar 

  16. Zander, R., Rinsland, C. P., Farmer, C. B. & Norton, R. H. J. geophys. Res. 92, 9836–9850 (1987).

    Article  ADS  CAS  Google Scholar 

  17. Goldman, A. et al. Geophys. Res. Lett. 8, 1012–1014 (1981).

    Article  ADS  CAS  Google Scholar 

  18. Murcray, D. G., Murcray, F. J., Goldman, A., Bonomo, F. S. & Blatherwick, R. D. High-Resolution Infrared Laboratory Spectra (Univ. Denver, 1984).

    Google Scholar 

  19. Herzberg, G. Molecular Spectra and Molecular Structure. II. Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand Reinhold, New York, 1945).

    Google Scholar 

  20. Plyler, E. K. & Benedict, W. S. J. Res. Natn. Bur. Stand. 47, 202–220 (1951).

    Article  CAS  Google Scholar 

  21. Rasmussen, R. A. & Khalil, M. A. K. Antarct. J. U.S. 17, 203–205 (1982).

    Google Scholar 

  22. Rasmussen, R. A. & Khalil, M. A. K. Antarct. J. U.S. 18, 250–252 (1983).

    Google Scholar 

  23. Rinsland, C. P. et al. J. geophys. Res. 93, 12607–12626 (1988).

    Article  ADS  Google Scholar 

  24. Zander, R., Stokes, G. M. & Brault, J. W. Geophys. Res. Lett. 10, 521–524 (1983).

    Article  ADS  CAS  Google Scholar 

  25. Watson, R. T. et al. NASA Ref. Publ. 1208, Table C-8.1 (1988).

  26. Khalil, M. A. K. & Rasmussen, R. A. in Baseline Atmospheric Program (Australia) 1985 (eds Forgan, B. W. & Fraser, P. J.) 26–29 (Dept. Sci./Bur. Met., Australia, 1987).

    Google Scholar 

  27. Rothman, L. S. et al. Appl. Opt. 26, 4058–4097 (1987).

    Article  ADS  CAS  Google Scholar 

  28. Smith, M. A. H. NASA tech. Mem. 83289 (1982).

  29. Johnston, K. Nature 329, 189 (1987).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rinsland, C., Johnson, D., Goldman, A. et al. Evidence for a decline in the atmospheric accumulation rate of CHCIF2 (CFC-22). Nature 337, 535–537 (1989). https://doi.org/10.1038/337535a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/337535a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing