Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Genetically haploid spermatids are phenotypically diploid

Abstract

Because chromosomal homologues segregate from one another during meiosis, spermatids are genetically different. Post-meiotic gene expression could lead to gametic differences, some of which might lead to preferential transmission of certain alleles over others. In both insects and mammals, however, all the cells derived from a single spermatogonial cell develop within a common syncytium formed as a result of incomplete cytokinesis at each of the mitotic and meiotic cell divisions1–3. It has been proposed that the intercellular bridges connecting the cells, which are about 1 μm in diameter4, permit the sharing of cytoplasmic constituents, thus ensuring the synchronous development of a clone of cells and gametic equivalence between haploid spermatids2,5,6. By analysing the product of a transgene which is expressed exclusively in post-meiotic germ cells in hemizygous transgenic mice, we have shown that genetically distinct spermatids share the product of the trans-gene and hence can be phenotypically equivalent.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Burgos, M. H. & Fawcett, D. W. J. biophys. biochem. Cytol. 1, 287–300 (1955).

    Article  CAS  Google Scholar 

  2. Fawcett, D. W. & Burgos, M. H. Ciba Fdn Symp. 2, 86–96 (1956).

    Google Scholar 

  3. Phillips, D. M. J. Cell Biol. 44, 243–247 (1970).

    Article  CAS  Google Scholar 

  4. Dym, M. & Fawcett, D. W. Biol. Reprod. 4, 195–215 (1971).

    Article  CAS  Google Scholar 

  5. Fawcett, D. W., Ito, S. & Slautterback, D. J. biophys. biochem. Cytol. 5, 453–460 (1959).

    Article  CAS  Google Scholar 

  6. Erickson, R. P. Nature new Biol. 243, 210–212 (1973).

    Article  CAS  Google Scholar 

  7. Hecht, N. B., Bower, P. A., Waters, S. H., Yelick, P. C. & Distel, R. J. Expl Cell Res. 164, 183–190 (1986).

    Article  CAS  Google Scholar 

  8. Peschon, J. J., Behringer, R. R., Brinster, R. L. & Palmiter, R. D. Proc. natn. Acad. Sci. U.S.A. 84, 5316–5319 (1987).

    Article  ADS  CAS  Google Scholar 

  9. Oakberg, E. F. Am. J. Anat. 99, 391–413 (1956).

    Article  CAS  Google Scholar 

  10. Nebel, B. R., Amarose, A. P. & Hackett, E. M. Science 134, 832–833 (1961).

    Article  ADS  CAS  Google Scholar 

  11. Dooher, G. B. & Bennett, D. Am. J. Anat. 136, 339–362 (1973).

    Article  CAS  Google Scholar 

  12. Fawcett, D. W., Anderson, W. A. & Phillips, D. M. Devl Biol. 26, 220–251 (1971).

    Article  CAS  Google Scholar 

  13. Fawcett, D. W. in The Functional Anatomy of the Spermatozoon (ed. Afzelius, B. A.) 199–210 (Permagon, Oxford, 1975).

    Book  Google Scholar 

  14. Erickson, R. P. Fedn Proc. 37, 2517–2521 (1978).

    CAS  Google Scholar 

  15. Clermont, Y. & Rambourg, A. Am. J. Anat. 151, 191–212 (1978).

    Article  CAS  Google Scholar 

  16. Handel, M. A. in Results and Problems in Cell Differentiation (ed. Hennig, W.) 1–62 (Springer, Berlin, 1987).

    Google Scholar 

  17. Frischauf, A. M. Trends Genet. 1, 100–103 (1985).

    Article  CAS  Google Scholar 

  18. Silver, L. M. A. Rev. Genet. 19, 179–208 (1985).

    Article  CAS  Google Scholar 

  19. Olds-Clarke, P. Gamete Res. 20, 241–264 (1988).

    Article  CAS  Google Scholar 

  20. Bellve, A. R. in Oxford Reviews of Reproductive Biology vol. 1 (ed. Finn, C. A.) 159–261 (Oxford University Press, London, 1979).

    Google Scholar 

  21. Hecht, N. B. in Experimental Approaches to Mammalian Embryonic Development (ed Rossant, J. & Pedersen, R. A.) 151–193 (Cambridge University Press, New York, 1986).

    Google Scholar 

  22. Brinster, R. L., Chen, H. Y., Trumbauer, M. E., Yagle, M. K. & Palmiter, R. D. Proc. natn. Acad. Sci. U.S.A. 82, 4438–4432 (1985).

    Article  ADS  CAS  Google Scholar 

  23. Mutter, G. L. & Wolgemuth, D. J. Proc. natn. Acad. Sci. U.S.A. 84, 5301–5305 (1987).

    Article  ADS  CAS  Google Scholar 

  24. Bellve, A. R. et al. J. Cell Biol. 74, 68–85 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braun, R., Behringer, R., Peschon, J. et al. Genetically haploid spermatids are phenotypically diploid. Nature 337, 373–376 (1989). https://doi.org/10.1038/337373a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/337373a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing