Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Biosynthesis of the reverse transcriptase of hepatitis B viruses involves de novo translational initiation not ribosomal frameshifting

Abstract

Retroviruses and many other types of genetic elements replicate by reverse transcription of RNA (for reviews, see refs 1 and 2). Although structurally and biologically very diverse, such elements carry conserved polymerase genes (pol) that encode proteins required for reverse transcription3. In most cases, the pol gene is preceded by an overlapping gene encoding one or more nucleocapsid proteins4, in a different reading frame. Because both coding regions are represented in a single mRNA, the question arises of how the reverse transcriptase in the alternative reading frame is expressed. In retroviruses and retrotransposons it is expressed as a nucleocapsid-polymerase fusion protein by ribosomal frameshift-ing during translation of the overlapping region5–8. We have examined the mechanism of polymerase biosynthesis in another family of animal viruses that use reverse transcription, the hepatitis B viruses. Genetic and biochemical studies reveal that these viruses do not use ribosomal frameshifting to generate this enzyme, but instead direct translation initiation at an internal initiation (AUG) codon in the polymerase gene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Varmus, H. E. Nature 314, 583–584 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Varmus, H. E. Scient. Am. 255, 56–64 (1987).

    Article  Google Scholar 

  3. Toh, H., Hayashida, H. & Miyata, T. Nature 305, 827–829 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Fuetterer, J. & Hohn, T. Trends biochem. Sci. 12, 92–95 (1987).

    Article  CAS  Google Scholar 

  5. Jacks, T. & Varmus, H. E. Science 230, 1237–1242 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Jacks, T., Townsley, K., Varmus, H. E. & Majors, J. Proc. natn. Acad. Sci. U.S.A. 84, 4298–4302 (1987).

    Article  ADS  CAS  Google Scholar 

  7. Jacks, T. et al. Nature 331, 280–283 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Clare, J., Belcourt, M. & Farabaugh, P. Proc. natn. Acad. Sci. U.S.A. 85, 6816–6820 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Summers, J. & Mason, W. S. Cell 29, 403–415 (1982).

    Article  CAS  PubMed  Google Scholar 

  10. Sprengel, R., Kuhn, C., Will, H. & Schaller, H. J. med. Virol. 15, 323–333 (1985).

    Article  CAS  PubMed  Google Scholar 

  11. Buscher, M., Reiser, W., Will, H. & Schaller, H. Cell 40, 717–724 (1985).

    Article  CAS  PubMed  Google Scholar 

  12. Enders, G. H., Ganem, D. & Varmus, H. E. Cell 42, 297–308 (1985).

    Article  CAS  PubMed  Google Scholar 

  13. Moroy, T. et al. EMBO J. 4, 1507–1514 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cattaneo, R., Will, H. & Schaller, H. EMBO J. 3, 2191–2196 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Will, H. et al Science 231, 594–596 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Bavand, M. R. & Laub, O. J. Virol. 62, 626–628 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Mack, D. H., Bloch, W., Nath, N. & Sninsky, J. J. J. Virol. 62, 4786–4790 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Will, H., Cattaneo, R., Koch, H.-G., Darai, G. & Schaller, H. Nature 299, 740–742 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Seeger, C., Ganem, D. & Varmus, H. E. Proc. natn. Acad. Sci. U.S.A. 81, 5849–5852 (1984).

    Article  ADS  CAS  Google Scholar 

  20. Sprengel, R., Kuhn, C., Manso, C. & Will, H. J. Virol 52, 932–937 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Aden, D. P., Fogel, A., Plotkin, S., Damjanov, I. & Knowles, B. B. Nature 282, 615–616 (1979).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Nakabayashi, H., Taketa, K., Miyano, K., Yamane, T. & Sato, J. Cancer Res. 42, 3835–3863 (1982).

    Google Scholar 

  23. Galle, P. R., Schlicht, H. J., Fischer, M. & Schaller, H. J. Virol. 62, 1736–1740 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hirsch, R., Colgrove, R. & Ganem, D. Virology 167, 136–142 (1988).

    Article  CAS  PubMed  Google Scholar 

  25. Radziwill, G., Zentgraf, H., Schaller, H. & Bosch, V. Virology 163, 123–132 (1988).

    Article  CAS  PubMed  Google Scholar 

  26. Kunkel, T. A. Proc. natn. Acad. Sci. U.S.A. 82, 488–492 (1985).

    Article  ADS  CAS  Google Scholar 

  27. Penswick, J., Hubler, R. & Hohn, T. J. Virol 62, 1460–1463 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Weiss, R., Teich, N., Varmus, H. & Coffin, J. (eds) RNA Tumor Viruses (Cold Spring Harbor Laboratory, New York, 1982).

  29. Kozak, M. Cell 47, 481–483 (1986).

    Article  CAS  PubMed  Google Scholar 

  30. Peabody, D. S., Subramani, S. & Berg, P. Molec. cell. Biol. 6, 2704–2711 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pelletier, J. & Sonenberg, N. Nature 334, 320–325 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Felsenstein, K. M. & Goff, S. P. J. Virol. 62, 2179–2182 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Bernards, A., Rubin, C. M., Westbrook, C. A., Paskind, M. & Baltimore, D. Molec. cell. Biol. 7, 3231–3236 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Stroehrer, V. L., Jorgensen, E. M. & Garber, R. L. Molec. cell. Biol. 6, 4667–4675 (1986).

    Article  Google Scholar 

  35. Gerlich, W. H. & Robinson, W. S. Cell 21, 801–809 (1980).

    Article  CAS  PubMed  Google Scholar 

  36. Ganem, D. & Varmus, H. E. A. Rev. Biochem. 56, 651–693 (1987).

    Article  CAS  Google Scholar 

  37. Bond, V. C. & Wold, B. Molec. cell. Biol. 7, 2286–2293 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, LJ., Pryciak, P., Ganem, D. et al. Biosynthesis of the reverse transcriptase of hepatitis B viruses involves de novo translational initiation not ribosomal frameshifting. Nature 337, 364–368 (1989). https://doi.org/10.1038/337364a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/337364a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing