Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Experimental and theoretical equation of state of cubic boron nitride

Abstract

The phase diagram of boron nitride (BN) is similar to that of carbon, incorporating phases at high temperatures and pressures whose structures and physical properties resemble diamond1–9. Cubic zinc-blende-structured BN is especially important because it is extremely hard—second only to diamond. Here we report the first measurement of the 300-K equation of state of this material to ultrahigh pressures (115 GPa), and obtain a zero-pressure bulk modulus of 369 ± 14 GPa. A theoretical equation of state derived from first-principles pseudopotential calculations yields a 300-K isotherm that agrees with our experimental results to better than 2.5% in volume and 2.0% in bulk modulus. The high-pressure Hugoniot (shock-wave equation of state) calculated from our equation of state for BN is in good agreement with existing shock-wave data. Our study illustrates the reliability of current experimental techniques (such as the ruby-fluorescence calibra-tion) and theoretical methods (pseudopotentials) for characterizing the behaviour of superhard, incompressible materials under high pressure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Corrigan, F. R. & Bundy, F. P. J. chem. Phys. 63, 3812–3820 (1975).

    Article  ADS  CAS  Google Scholar 

  2. Wentorf, R. H. J. chem. Phys. 26, 956 (1957).

    Article  ADS  CAS  Google Scholar 

  3. Bundy, F. P. & Wentorf, R. H. J. chem. Phys. 38, 1144–1149 (1963).

    Article  ADS  CAS  Google Scholar 

  4. Yamaoka, S. et al. Physica B139–140B, 668–670 (1986).

    ADS  Google Scholar 

  5. Gust, W. H. & Young, D. A. Phys. Rev. B 15, 5012–5022 (1977).

    Article  ADS  CAS  Google Scholar 

  6. DeCarli, P. S. Bull. Am. phys. Soc. 12, 1127 (1967).

    Google Scholar 

  7. Coleburn, N. L. & Forbes, J. W. J. chem. Phys. 48, 555–559 (1968).

    Article  ADS  CAS  Google Scholar 

  8. Onodera, A., Miyazaki, H. & Fujimoto, N. J. chem. Phys. 74, 5814–5816 (1981).

    Article  ADS  CAS  Google Scholar 

  9. Akashi, T., Sawaoka, A. & Saito, S. J. Am. Ceram. Soc. 61, 245–246 (1978).

    Article  CAS  Google Scholar 

  10. DeVries, R. C. GE Report #72CRD178 (1972).

  11. Mao, H. K., Bell, P. M., Dunn, K. J., Chrenko, R. M. & DeVries, R. C. Rev. Sci. Instrum. 50, 1002–1009 (1979).

    Article  ADS  CAS  Google Scholar 

  12. Barnett, J. D., Block, S. & Piermarini, G. J. Rev. Sci. Instrum. 44, 1–9 (1973).

    Article  ADS  Google Scholar 

  13. Mao, H. K., Bell, P. M., Shaner, J. W. & Steinberg, D. J. J. appl. Phys. 49, 3276–3283 (1978).

    Article  ADS  CAS  Google Scholar 

  14. Birch, F. J. geophys. Res. 83, 1257–1266 (1978).

    Article  ADS  CAS  Google Scholar 

  15. Knittle, E. & Jeanloz, R. Science 235, 668–670 (1987).

    Article  ADS  CAS  Google Scholar 

  16. Cohen, M. L. Phys. Scr. Tl, 5 (1982).

    Article  ADS  Google Scholar 

  17. Chelikowsky, J. R. & Louie, S. G. Phys. Rev. B 29, 3470–3481 (1984).

    Article  ADS  CAS  Google Scholar 

  18. Wentzcovitch, R. M., Chang, K. J. & Cohen, M. L. Phys. Rev. B 34, 1071–1079 (1986).

    Article  ADS  CAS  Google Scholar 

  19. Theory of the Inhomogeneous Electron Gas (eds Lundqvist, S. & March, N. H.) (Plenum, New York, 1983).

    Google Scholar 

  20. Wigner, E. Phys. Rev. 46, 1002–1011 (1934).

    Article  ADS  CAS  Google Scholar 

  21. Hamann, D. R., Schluter, M. & Chiang, C. Phys. Rev. Lett. 43, 1494–1497 (1979).

    Article  ADS  CAS  Google Scholar 

  22. Wentzcovitch, R. M., Cohen, M. L. & Lam, P. K. Phys. Rev. B 38, 6058–6065 (1987).

    Article  Google Scholar 

  23. Vanderbilt, D. & Louie, S. G. J. comput. Phys. 56, 259–270 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  24. Kubaschewski, O. & Alcock, C. B. Metallurgical thermochemistry 5th edn (Pergamon, New York, 1979).

    Google Scholar 

  25. McQueen, R. G., Marsh, S. P., Taylor, J. W., Fritz, J. N. & Carter, W. J. in High–Velocity Impact Phenomena (ed. Kinslow, R.) 294–419 (Academic, Orlando, Florida, 1970).

    Google Scholar 

  26. Hedin, L. & Lundqvist, B. I. J. Phys. C 4, 2064–2083 (1971).

    ADS  Google Scholar 

  27. LASL Shock Hugoniot Data (ed. Marsh, S. P.) 658 (Univ. Calif. Press, Berkeley, 1980).

  28. Ahrens, T. J. & Jeanloz, R. J. geophys. Res. 92, 10363–10375 (1987).

    Article  ADS  Google Scholar 

  29. Sanjurjo, J. A., Lopez-Cruz, E., Vogl, P. & Cardona, M. Phys. Rev. B 28, 4579–4584 (1983).

    Article  ADS  CAS  Google Scholar 

  30. Cohen, M. L. Phys. Rev. B 32, 7988–7991 (1985).

    Article  ADS  CAS  Google Scholar 

  31. Lam, P. K., Cohen, M. L. & Martinez, G. Phys. Rev. B 35, 9190–9194 (1987).

    Article  ADS  CAS  Google Scholar 

  32. Wagman, D. D. et al. Natn. Bur. Stand. Tech. Note 270 (US Government Printing Office, Washington, DC, 1968).

    Google Scholar 

  33. Wentzcovitch, R., Fahey, S., Cohen, M. L. & Louie, S. G. Phys. Rev. B 38, 6191–6196 (1988).

    Article  ADS  CAS  Google Scholar 

  34. Murnaghan, F. D. Proc. natn. Acad. Sci. 30, 244 (1944).

    Article  ADS  CAS  Google Scholar 

  35. Strunz, H. Mineralogische Tabellen (Akad Verlagsgesellschaft, Leipzig, 1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knittle, E., Wentzcovitch, R., Jeanloz, R. et al. Experimental and theoretical equation of state of cubic boron nitride. Nature 337, 349–352 (1989). https://doi.org/10.1038/337349a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/337349a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing