Abstract
The phase diagram of boron nitride (BN) is similar to that of carbon, incorporating phases at high temperatures and pressures whose structures and physical properties resemble diamond1–9. Cubic zinc-blende-structured BN is especially important because it is extremely hard—second only to diamond. Here we report the first measurement of the 300-K equation of state of this material to ultrahigh pressures (115 GPa), and obtain a zero-pressure bulk modulus of 369 ± 14 GPa. A theoretical equation of state derived from first-principles pseudopotential calculations yields a 300-K isotherm that agrees with our experimental results to better than 2.5% in volume and 2.0% in bulk modulus. The high-pressure Hugoniot (shock-wave equation of state) calculated from our equation of state for BN is in good agreement with existing shock-wave data. Our study illustrates the reliability of current experimental techniques (such as the ruby-fluorescence calibra-tion) and theoretical methods (pseudopotentials) for characterizing the behaviour of superhard, incompressible materials under high pressure.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Corrigan, F. R. & Bundy, F. P. J. chem. Phys. 63, 3812–3820 (1975).
Wentorf, R. H. J. chem. Phys. 26, 956 (1957).
Bundy, F. P. & Wentorf, R. H. J. chem. Phys. 38, 1144–1149 (1963).
Yamaoka, S. et al. Physica B139–140B, 668–670 (1986).
Gust, W. H. & Young, D. A. Phys. Rev. B 15, 5012–5022 (1977).
DeCarli, P. S. Bull. Am. phys. Soc. 12, 1127 (1967).
Coleburn, N. L. & Forbes, J. W. J. chem. Phys. 48, 555–559 (1968).
Onodera, A., Miyazaki, H. & Fujimoto, N. J. chem. Phys. 74, 5814–5816 (1981).
Akashi, T., Sawaoka, A. & Saito, S. J. Am. Ceram. Soc. 61, 245–246 (1978).
DeVries, R. C. GE Report #72CRD178 (1972).
Mao, H. K., Bell, P. M., Dunn, K. J., Chrenko, R. M. & DeVries, R. C. Rev. Sci. Instrum. 50, 1002–1009 (1979).
Barnett, J. D., Block, S. & Piermarini, G. J. Rev. Sci. Instrum. 44, 1–9 (1973).
Mao, H. K., Bell, P. M., Shaner, J. W. & Steinberg, D. J. J. appl. Phys. 49, 3276–3283 (1978).
Birch, F. J. geophys. Res. 83, 1257–1266 (1978).
Knittle, E. & Jeanloz, R. Science 235, 668–670 (1987).
Cohen, M. L. Phys. Scr. Tl, 5 (1982).
Chelikowsky, J. R. & Louie, S. G. Phys. Rev. B 29, 3470–3481 (1984).
Wentzcovitch, R. M., Chang, K. J. & Cohen, M. L. Phys. Rev. B 34, 1071–1079 (1986).
Theory of the Inhomogeneous Electron Gas (eds Lundqvist, S. & March, N. H.) (Plenum, New York, 1983).
Wigner, E. Phys. Rev. 46, 1002–1011 (1934).
Hamann, D. R., Schluter, M. & Chiang, C. Phys. Rev. Lett. 43, 1494–1497 (1979).
Wentzcovitch, R. M., Cohen, M. L. & Lam, P. K. Phys. Rev. B 38, 6058–6065 (1987).
Vanderbilt, D. & Louie, S. G. J. comput. Phys. 56, 259–270 (1984).
Kubaschewski, O. & Alcock, C. B. Metallurgical thermochemistry 5th edn (Pergamon, New York, 1979).
McQueen, R. G., Marsh, S. P., Taylor, J. W., Fritz, J. N. & Carter, W. J. in High–Velocity Impact Phenomena (ed. Kinslow, R.) 294–419 (Academic, Orlando, Florida, 1970).
Hedin, L. & Lundqvist, B. I. J. Phys. C 4, 2064–2083 (1971).
LASL Shock Hugoniot Data (ed. Marsh, S. P.) 658 (Univ. Calif. Press, Berkeley, 1980).
Ahrens, T. J. & Jeanloz, R. J. geophys. Res. 92, 10363–10375 (1987).
Sanjurjo, J. A., Lopez-Cruz, E., Vogl, P. & Cardona, M. Phys. Rev. B 28, 4579–4584 (1983).
Cohen, M. L. Phys. Rev. B 32, 7988–7991 (1985).
Lam, P. K., Cohen, M. L. & Martinez, G. Phys. Rev. B 35, 9190–9194 (1987).
Wagman, D. D. et al. Natn. Bur. Stand. Tech. Note 270 (US Government Printing Office, Washington, DC, 1968).
Wentzcovitch, R., Fahey, S., Cohen, M. L. & Louie, S. G. Phys. Rev. B 38, 6191–6196 (1988).
Murnaghan, F. D. Proc. natn. Acad. Sci. 30, 244 (1944).
Strunz, H. Mineralogische Tabellen (Akad Verlagsgesellschaft, Leipzig, 1977).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Knittle, E., Wentzcovitch, R., Jeanloz, R. et al. Experimental and theoretical equation of state of cubic boron nitride. Nature 337, 349–352 (1989). https://doi.org/10.1038/337349a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/337349a0
This article is cited by
-
Atomic stiffness for bulk modulus prediction and high-throughput screening of ultraincompressible crystals
Nature Communications (2023)
-
Pressure-induced ferroelectric and anti-ferroelectric phase transitions in LaN
Science China Physics, Mechanics & Astronomy (2023)
-
Effect of Workpiece Atom Diffusion Into CBN Tool on Its Mechanical Properties in Cutting Ni–Fe–Cr Alloy Based on Molecular Dynamics Simulation
International Journal of Precision Engineering and Manufacturing (2021)
-
Structural, electronic, mechanical, thermal and optical properties of B(P,As)1−xNx; (x = 0, 0.25, 0.5, 0.75, 1) alloys and hardness of B(P,As) under compression using DFT calculations
Indian Journal of Physics (2017)
-
Vibrational and Raman Spectroscopic Study of Cubic Boron Nitride Under Pressure Using Density Functional Theory
Journal of Electronic Materials (2017)