Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Role of transcriptional interference in the Drosophila melanogaster Adh promoter switch

Abstract

The Drosophilia melanogaster alcohol dehydrogenase (Adh) gene is transcribed from two closely linked promoters1,2, which are regulated by two upstream enhancers. The proximal promoter is active primarily in first to early third-instar larvae, whereas the distal promoter is active in late third-instar larvae and adults (Fig. 1). The Adh larval enhancer and the proximal promoter are separated by the Adh adult enhancer and the distal promoter. Because the proximal promoter is turned off just as the distal promoter is turned on, we considered the possibility that the distal promoter or adult enhancer has a role in the downregulation of the proximal promoter. We report here that transcription from the distal promoter is required to shut off the proximal promoter. In the absence of the distal promoter, the proximal promoter is active throughout larval development and in adults. The proximal promoter is also aberrantly active in adults when placed upstream of the distal promoter. These results suggest that the developmental switch from proximal to distal promoter is regulated by the stage-specific activation of the distal promoter, and the subsequent repression of the proximal promoter by transcriptional interference3–8.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Benyajati, C., Spoerel, N., Haymerle, H. & Ashburner, M. Cell 33, 125–133 (1983).

    Article  CAS  Google Scholar 

  2. Savakis, C., Ashburner, M. & Willis, J. H. Devl Biol. 114, 194–207 (1986).

    Article  CAS  Google Scholar 

  3. Hausler, B. & Somerville, R. L. J. molec. Biol. 127, 353–356 (1979).

    Article  CAS  Google Scholar 

  4. Adhya, S. & Gottesman, M. Cell 29, 939–944 (1982).

    Article  CAS  Google Scholar 

  5. Cullen, B. R., Lomedico, P. & Ju, G. Nature 307, 241–245 (1984).

    Article  ADS  CAS  Google Scholar 

  6. Proudfoot, N. J. Nature 322, 562–565 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Bateman, E. & Paule, M. R. Cell 54, 985–992 (1988).

    Article  CAS  Google Scholar 

  8. Gay, N. J., Tybulewicz, V. L. & Walker, J. E. Biochem. J. 234, 111–117 (1986).

    Article  CAS  Google Scholar 

  9. Heberlein, U. & Tjian, R. Nature 331, 410–415 (1988).

    Article  ADS  CAS  Google Scholar 

  10. Bruns, G. A. & Ingram, V. M. Phil. Trans. R. Soc. B266, 225–305 (1973).

    Article  CAS  Google Scholar 

  11. Brown, J. L. & Ingram, V. M. J. biol. Chem. 249, 3960–3972 (1974).

    CAS  PubMed  Google Scholar 

  12. Choi, O. B. & Engle, J. D. Cell 55, 17–26 (1988).

    Article  CAS  Google Scholar 

  13. Posakony, J. W., Fischer, J. A. & Maniatis, T. Cold Spring Harb. Symp. quant. Biol. 50, 515–520 (1985).

    Article  CAS  Google Scholar 

  14. Spradling, A. C. & Rubin, G. M. Cell 34, 47–57 (1983).

    Article  CAS  Google Scholar 

  15. Maniatis, T., Fritsch, E. F. & Sambrook, J. Molecular Cloning (Cold Spring Harbor Laboratories, New York, 1982).

    Google Scholar 

  16. Rubin, G. M. & Spradling, A. C. Nucleic Acids Res. 11, 6341–6351 (1983).

    Article  CAS  Google Scholar 

  17. Karess, R. E. & Rubin, G. M. Cell 38, 135–146 (1984).

    Article  CAS  Google Scholar 

  18. Rubin, G. M. & Sprading, A. C. Science 218, 348–353 (1982).

    Article  ADS  CAS  Google Scholar 

  19. Spradling, A. C. & Rubin, G. M. Science 218, 341–347 (1982).

    Article  ADS  CAS  Google Scholar 

  20. Goldberg, D. A., Posakony, J. W. & Maniatis, T. Cell 34, 58–73 (1983).

    Article  Google Scholar 

  21. Fischer, J. A. & Maniatis, T. EMBO J. 5, 1275–1289 (1986).

    Article  CAS  Google Scholar 

  22. Zinn, K., DiMaio, D. & Maniatis, T. Cell 34, 865–879 (1983).

    Article  CAS  Google Scholar 

  23. Benyajati, C., Place, A., Wang, N., Pentz, E. & Sofer, W. Nucleic Acids Res. 10, 7261–7272 (1982).

    Article  CAS  Google Scholar 

  24. Melton, D. et al. Nucleic Acids Res. 12, 7035–7056 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corbin, V., Maniatis, T. Role of transcriptional interference in the Drosophila melanogaster Adh promoter switch. Nature 337, 279–282 (1989). https://doi.org/10.1038/337279a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/337279a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing