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non-homologous three-helix packings 
observed, seven are described by the first 
model and one by the second'. 

The quasi-spherical polyhedron model 
for the packing of helices has important 
implications for fields outside protein 
folding. Similarities in the structures of 
proteins are often taken to imply evolu­
tionary relations even if there is no sig­
nificant homology in sequence. Such a 
relation may exist. But Murzin and 
Finkelstein show that helical proteins can 
have very similar architectures indepen­
dent of both sequence homology and 
chain pathway. Helix packings from non­
homologous proteins but whose geometry 
is described by the same model appear 
very similar. Indeed, helix packings whose 
connectivities are very different but which 
fit the same model have sets of alpha 
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carbon atoms that superpose with a root­
mean-square difference in position of less 
than 2.5 A. Values somewhat greater than 
this have previously been taken as clear 
evidence for evolutionary relationships. 0 
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Breaking the matrix speed limit 
Steve McCormick 

MATRICES abound in the sciences. Many 
problems involving inter-related variables 
can be cast into equations that use the 
familiar array form of a matrix. For large­
scale problems involving many variables, 
the matrix in question is often composed 
mostly of zeros- a so-called sparse matrix. 
To capitalize on this structure, the equa­
tions can usually be solved by iteration on 
a computer. Unfortunately, the asymp­
totic approach of the iteration to the solu­
tion can become extremely slow, a process 
termed critical slowing down. Among the 
many possibilities for combating this 
stumbling block, that now used by R. G. 
Edwards et al. (Phys. Rev. Lett. 61, 1333-
1335; 1988) in a model problem shows 
great promise. 

Sparse matrices arise in the modelling of 
large, complex phenomena from virtually 
every corner of science, including fluid 
mechanics, structural analysis, molecular 
dynamics, geodesy, economics, image 
reconstruction and X-ray crystallography. 
A sparse matrix expresses known local 
rules that govern the behaviour of a 
system of objects describing the phenom­
enon of interest. These rules characterize 
direct interactions that emerge as num­
bers in the matrix array. The numbers in 
a given row quantify the interaction of a 
given object with all of its neighbours. The 
location of the relatively few non-zero 
numbers in the row indicate who the 
neighbours are, and their magnitudes 
indicate the degree of the interaction. The 
actual behaviour of the system can be 
recovered numerically by solving a set of 
equations defined by the matrix, but 
conventional methods for solving these 
equations often suffer from the debility of 
critical slowing down. 

In their new work , Edwards et al. inves­
tigate this sort of trouble in the context 
of certain lattice systems that arise in 
the study of random-resistor networks, 
quantum chromodynamics and discrete 
Schrodinger operators. (For example, 
random-resistor networks are a paradigm 
for the conduction of current through 
composite materials. The non-zero matrix 
elements correspond to resistors randomly 
placed between neighbouring points of a 
lattice, and the idea is to determine the 
current at these points for a given external 
current supplied to the lattice .) The cure 
Edwards et al. use involves a relatively 
new method, called algebraic multigrid 
(AMG), the basic idea of which can be 
described as follows. 

Conventional methods start with a 
given approximation to the state of the 
system, then attempt to make improve­
ments by a sequence of sweeps that adjust 
the state of each object in the system, forc­
ing the objects in their turn to obey the 
local rules. Critical slowing down occurs 
after a few such sweeps because these 
local adjustments can take an inordinate 
amount of time to determine the global 
state of the system. This is not unlike the 
trouble that an ant has in building or, 
better, rebuilding an ant hill . AMG 
avoids this trouble by making additional 
improvements on more global scales. 

This is accomplished systematically by 
aggregating the objects into groups, auto­
matically translating the local rules to 
apply to the aggregated system, then 
sweeping through these groups to make 
adjustments at the aggregated level. This 
approach gives an ant the power to work 
with clusters of sand for adjusting the 
coarse features of the hill, reserving the 

delicate manipulation of individual grains 
for the finer features. It gives the resear­
cher the ability to determine the state of a 
system at a cost equivalent to just a couple 
of sweeps of the conventional method. 

This approach is often relatively easy to 
develop, at least in principle. For lattice 
systems, there is usually one property (or 
variable) used to express the local rules 
among the objects, and this property can 
be treated as sort of a metric to determine 
appropriately how the objects and local 
rules should be aggregated. For example, 
in random-resistor networks, the resistance 
between two sites that are geometric 
neighbours can be interpreted as a measure 
of the intervening distance. Sites that are 
close in this sense can be grouped, and the 
aggregated rules can be determined by an 
averaging of the individual rules based on 
this measure. AMG computer software 
that automatically implements this 
approach has indeed been fairly success­
ful for lattice systems, elliptic fluid flows 
and various other applications. 

But for other complicated phenomena, 
development of the AMG approach can 
require very substantial research. For 
example, many systems use two or more 
properties per object to define local rules. 
In structural analysis, displacements for 
each coordinate and rotations for each 
pair of coordinates determine the state of 
the system. In developing an AMG scheme 
for a new problem of this type, just how 
such properties should be used to form 
distance measures is not always clear at 
the outset. But there have been very 
successful designs of AMG techniques for 
a broadening class of applications, includ­
ing least-squares problems in geodesy, 
general fluid flows and various structural­
analysis problems (see SIAM Frontiers in 
Applied Mathematics Vol. 3, ed. McCor­
mick, S. F.; SIAM, Pennsylvania, 1987). 

But this is just the beginning. Led by its 
pioneer A. Brandt and others, the multi­
grid concept has been making dramatic 
inroads into many new areas of science 
(see Lecture Notes in Pure and Applied 
Mathematics Vol. 110, ed. McCormick, S. 
F.; Springer, New York, 1988) . Several 
challenging problems that were previously 
thought to be intractable now seem ready 
to fall before the multigrid axe. In the field 
of quantum chromodynamics, it is esti­
mated that conventional methods could 
take ten million years or more to deter­
mine the mass of a proton. A novel multi­
grid approach seems to hold the promise 
of reducing this time to perhaps as little as 
a few hours. If such dramatic improve­
ments can be made in this and other 
challenging fields, then critical slowing 
down may be well on its way out of 
scientificcomputation. 0 
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