Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Influence of orbital parameters on Pleistocene loess deposition in central Alaska

Abstract

Few long proxy climatic records are available from terrestrial locations. The isotope records of Pleistocene climate change found in marine cores reflect worldwide ice-volume and temperature changes forced by variations in the Earth's orbital geometry. Comparable terrestrial records are rare. Loess (wind-deposited silt) is perhaps the closest terrestrial analogue to marine sediments in that both result from more-or-less continuous deposition of fine-grained sediment. Here we examine the hypothesis that mag-netic susceptibility variations through loess sections reflect climate forcing. We statistically tested cross-correlations between high-precision, orbitally tuned marine oxygen isotope curves recording the past 250,000 yr BP, and magnetic susceptibility profiles through a thick loess section in central Alaska. Highly significant (P> 0.0001) correlations indicate strong, thick palaeosols formed in Arctic loess during early parts of interglacial periods correspond-ing to isotope stages 7 and 5. Thinner soils formed during interstadial events corresponding to early stage 7 and stage 3. Autocorrelation and time-series analysis of the loess data show spectral peaks at 125,000, 41,000 and 23,000 yr BP, showing for the first time that terrestrial orbital periodicities influenced and are recorded in proxy climatic data from terrestrial aeolian deposits at high latitudes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tungsheng, L., Zhisheng, A., Baoyin, Y. & Jiamao, H. Episodes 8, 21–28 (1985).

    Google Scholar 

  2. Kukla, G. Quat. Sci. Rev. 6, 191–219 (1987).

    Article  ADS  Google Scholar 

  3. Bloemendal, J. EOS 68, 1258 (1987).

    Google Scholar 

  4. Leg 117 Scientific Drilling Party Geotimes 33, 13–16 (1988).

  5. Péwé, T. Bull. geol. Soc. Am. 66, 699–724 (1955).

    Article  Google Scholar 

  6. Péwé, T. U.S. Geol. Surv. Prof. Paper 835, 145 pp (1975).

    Google Scholar 

  7. Beget, J. Proc. Fifth Int. Permafrost Conf. 672–677 (1988).

  8. Westgate, J., Walter, R., Pearce, G. & Gorton, M. Can. J. Earth Sci. 22, 893–906 (1985).

    Article  ADS  CAS  Google Scholar 

  9. Wintle, A. & Westgate, J. Geology 14, 594–597 (1986).

    Article  ADS  CAS  Google Scholar 

  10. Berger, G. W. Can. J. Earth Sci. 24, 1975–1984 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Juvigne, E. & Porter, S. Geogr. phys. Quat. 39, 7–12 (1985).

    Google Scholar 

  12. Thorson, R. & Bender, G. Bull. geol. Soc. Am. 96, 702–709 (1985).

    Article  Google Scholar 

  13. Debenham, N. C. Nuclear Tracks 10, 717–724 (1985).

    CAS  Google Scholar 

  14. Wintle, A. Geologic en Mijnbouw 66, 35–42 (1987).

    CAS  Google Scholar 

  15. Westgate, J. Science 218, 789–790 (1982).

    Article  ADS  CAS  Google Scholar 

  16. Naeser, N., Westgate, J., Hughes, O. & Pewe, T. Can. J. Earth Sci. 19, 2167–2178 (1982).

    Article  ADS  CAS  Google Scholar 

  17. Westgate, J. Geophys. Res. Lett. 15, 376–379 (1988).

    Article  ADS  CAS  Google Scholar 

  18. Naeser, N. & Naeser, C. in Quaternary Dating Methods (ed. Mahaney, W.) 87–100 (Elsevier, Amsterdam, 1984).

    Book  Google Scholar 

  19. Naeser, C., Briggs, N., Obradovich, J. & Izett, G. in Tephra Studies (ed. Self, S. & Sparks, R.) 13–48 (Reidel, Dordrecht, 1981).

    Book  Google Scholar 

  20. McKenna, T., Lerche, I., Williams, D. & Full, W. Palaeogeogr. Palaeoclimatol. Palaeocol. 64, 241–264 (1988).

    Article  ADS  CAS  Google Scholar 

  21. Pisias, N. et al. Mar. Geol. 56, 119–136 (1984).

    Article  ADS  CAS  Google Scholar 

  22. Martinson, D. et al. Quat. Res. 27, 1–29 (1987).

    Article  CAS  Google Scholar 

  23. Imbrie, J. & Imbrie, J. Science 207, 943–953 (1980).

    Article  ADS  CAS  Google Scholar 

  24. Bloom, A., Broecker, W., Chappel, J., Mathews, R. & Mesolella, K. Quat. Res. 4, 185–205 (1974).

    Article  CAS  Google Scholar 

  25. Fairbanks, R. & Mathews, R. Quat. Res. 10, 181–196 (1978).

    Article  CAS  Google Scholar 

  26. Dodge, R., Fairbanks, R., Benninger, L. & Maurasse, F. Science 219, 1423–1425 (1983).

    Article  ADS  CAS  Google Scholar 

  27. Hays, J., Imbrie, J. & Shackleton, N. Science 194, 1121–1132 (1976).

    Article  ADS  CAS  Google Scholar 

  28. Berger, A. L. Quat. Res. 9, 139–167 (1978).

    Article  Google Scholar 

  29. Milankovitch, M. Kanon der Erdbestrahlung une sei Eiszeitenproblem (Acad. R. Serbe, Belgrad, 1941).

    Google Scholar 

  30. Emiliani, C. J. Geol. 74, 109–126 (1966).

    Article  ADS  CAS  Google Scholar 

  31. Ruddiman, W. & Mclntyre, A. Science 204, 173–175 (1979).

    Article  ADS  CAS  Google Scholar 

  32. Kominz, M. & Pisias, N. Science 204, 171–173 (1979).

    Article  ADS  CAS  Google Scholar 

  33. Broecker, W. Science 151, 299–304 (1966).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Begét, J., Hawkins, D. Influence of orbital parameters on Pleistocene loess deposition in central Alaska. Nature 337, 151–153 (1989). https://doi.org/10.1038/337151a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/337151a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing