Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The formation of controlled-porosity membranes from anodically oxidized aluminium


Synthetic membranes are used in a number of diverse applications, such as filtration1,2, bioreactors2,3, tissue culture4, analytical devices including sensors2,5, and as supports for active materials1,5. Narrow pore-size distribution, high pore density and thinness are often important attributes. The anodic oxidation of aluminium6 can produce porous films possessing these features; the anodizing voltage controls the pore size and pore density, whereas the thick-ness is determined by the amount of charge transferred. A major problem with this technique, however, is that the films remain attached to the aluminium, with the pore base closed by an oxide barrier layer. Here we overcome this problem by progressively reducing the anodizing voltage, thereby causing perforation of the barrier layer and separation of the film as a porous membrane.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others


  1. Lonsdale, H. K., J. Membrane Sci. 10, 81–181 (1982).

    Article  CAS  Google Scholar 

  2. Michaels, A. S. & Matson, S. L. Desalination 53, 231–258 (1985).

    Article  CAS  Google Scholar 

  3. Flaschel, E., Wandrey, C. & Kula, M.-R. Adv. biochem. Eng. 26, 73–142 (1983).

    CAS  Google Scholar 

  4. Vaughan, F. L., Gray, R. H. & Bernstein, I. A. Vitro Cellular & Developmental Biology 22, 141–149 (1986).

    Article  CAS  Google Scholar 

  5. Nylander, C. J. Phys. E 18, 736–749 (1985).

    ADS  CAS  Google Scholar 

  6. O'Sullivan, J. P. & Wood, G. C. Proc. R. Soc. Lond. A317, 511–543 (1970).

    Article  ADS  Google Scholar 

  7. Hoar, T. P. & Mott, N. F. J. phys. Chem. Solids 9, 97–99 (1959).

    Article  ADS  CAS  Google Scholar 

  8. Siejka, J., Ortega, C. J. electrochem. Soc. 124, 883–891 (1977).

    Article  CAS  Google Scholar 

  9. Thompson, G. E., Furneaux, R. C., Wood, G. C., Richardson, J. A. & Goode, J. S. Nature 272, 433–435 (1978).

    Article  ADS  CAS  Google Scholar 

  10. Takahashi, H., Nagayama, M., Akahori, H. & Kitahara, A., J. Electron Microsc. 22, 149–157 (1973).

    CAS  Google Scholar 

  11. Furneaux, R. C., Thompson, G. E. & Wood, G. C. Corros. Sci. 18, 853–881 (1978).

    Article  CAS  Google Scholar 

  12. Alvey, C. E., Wood, G. C. & Thompson, G. E. in Proc. 10th World Congr. Metal Finishing (ed. Haruyama, S.) 275–280 (Metal Finishing Soc. Japan, Tokyo, 1980).

    Google Scholar 

  13. Thompson, G. E., Furneaux, R. C. & Wood, G. C. Trans. Inst. Metal Finishing 53, 97–102 (1975).

    Article  Google Scholar 

  14. Thompson, G. E., Furneaux, R. C., Wood, G. C. & Hutchings, R. J. electrochem. Soc. 125, 1480–1482 (1978).

    Article  CAS  Google Scholar 

  15. Vermilyea, D. A. & Vedder, W. Trans. Faraday Soc. 66, 2644–2654 (1970).

    Article  CAS  Google Scholar 

  16. Chen, Y.-S. R., Stumm, W. & Butler, J. N., J. Colloid Interface Sci. 43, 421–436 (1973).

    Article  ADS  CAS  Google Scholar 

  17. Anderson, M. A., Ferguson, J. F. & Gavis, J. J. Colloid Interface Sci. 54, 391–399 (1976).

    Article  ADS  CAS  Google Scholar 

  18. Bowen, W. R. & Clark, R. A. J. Colloid Interface Sci. 97, 401–409 (1984).

    Article  ADS  CAS  Google Scholar 

  19. Takahashi, H. & Nagayama, N. J. chem. Soc. Japan 36, 34–40 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and permissions

About this article

Cite this article

Furneaux, R., Rigby, W. & Davidson, A. The formation of controlled-porosity membranes from anodically oxidized aluminium. Nature 337, 147–149 (1989).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing