Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of the membrane-pore-forming fragment of colicin A

Abstract

Colicins are antibiotic proteins produced by and active against sensitive Eschericia coli and closely related bacteria. They can adsorb to specific receptors located at the external surface of the outer membrane of sensitive cells, and are then translocated to their specific targets within these cells. The largest group of colicins comprises those which can form voltage-dependent channels in membranes, thereby destroying the cell's energy potential1. Colicin molecules are organized in structural domains, each domain carrying one function associated with the toxin's lethal activity. The pore-forming activity seems to be located at the carboxyl terminus. A thermolytic fragment comprising amino acids 389–592 from colicin A has pore-forming properties very similar to those of the entire molecule. This fragment is soluble in aqueous medium and spontaneously inserts into lipid bilayers2. We have determined the structure of the pore-forming fragment of colicin A by X-ray crystallography and refinement at 2.5 Å resolution. The protein consists of ten α-helices organized in a three-layer structure. Two of the helices are completely buried within the structure and form a hydrophobic hairpin loop similar to that proposed for signal sequences which function in translocation. We present a model for insertion of the protein into lipid bilayers the features of which may be applicable in other biological systems involving protein insertion or translocation across membranes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lazdunski, C. et al. Biochim. biophys. Acta 947, 445–464 (1988).

    Article  CAS  Google Scholar 

  2. Collarini, M., Amblard, G., Lazdunski, C. & Pattus, F. Eur. biophys. J. 14, 147–153 (1987).

    Article  CAS  Google Scholar 

  3. Tucker, A. D., Pattus, F. & Tsernoglou, D. J. molec. Biol. 190, 133–134 (1986).

    Article  CAS  Google Scholar 

  4. Howard, A. L. et al. J. appl. Crystallogr. 20, 383–387 (1987).

    Article  CAS  Google Scholar 

  5. Wang, B. C. in Meth. Enzym. 115, 90–112 (1985).

    Article  CAS  Google Scholar 

  6. Leslie, A. G. W. Acta crystallogr. A43, 134–136 (1987).

    Article  Google Scholar 

  7. Brünger, A. T., Kuriyan, J. & Karplus, M. Science 235, 458–460 (1987).

    Article  ADS  Google Scholar 

  8. van Gunsteren, W. F. Protein Eng. 2, 5–13 (1988).

    Article  CAS  Google Scholar 

  9. Hendrickson, W. A. & Konnert, J. H. Biomolec. Struct. Funct. conform. Evol. 1, 43–57 (1981).

    Article  CAS  Google Scholar 

  10. Cavard, D. et al. Eur. J. Biochem. 172, 507–512 (1988).

    Article  CAS  Google Scholar 

  11. Remington, S., Wiegand, G. & Huber, R. J. molec. Biol. 158, 111–152 (1982).

    Article  CAS  Google Scholar 

  12. Pattus, F., Keitz, F., Martinez, C., Provencher, S. W. & Lazdunski, C. Eur. J. Biochem. 152, 681–689 (1985).

    Article  CAS  Google Scholar 

  13. Pattus, F. et al. Biochemistry 22, 5698–5703 (1983).

    Article  CAS  Google Scholar 

  14. Cleveland, M. B., Slatin, S., Finkelstcin, A. & Levinthal, C. Proc. natn. Acad. Sci. U.S.A. 74, 2589–2593 (1977).

    Article  Google Scholar 

  15. Baty, D. et al. Proc. natn. Acad. Sci. U.S.A. 84, 1152–1156 (1987).

    Article  ADS  CAS  Google Scholar 

  16. Liu, Q. R. et al. Proteins 1, 218–229 (1986).

    Article  CAS  Google Scholar 

  17. Lunn, C. A., Takahara, M. & Inouye, M. Meth. Enzym. 125, 18–149 (1986).

    Google Scholar 

  18. Engelman, D. & Steitz, T. A. Cell 23, 411–422 (1981).

    Article  CAS  Google Scholar 

  19. Schleyer, M. & Neupert, W. Cell 43, 339–350 (1985).

    Article  CAS  Google Scholar 

  20. Eilers, M. & Schatz, G. Nature 332, 228–232 (1986).

    Article  ADS  Google Scholar 

  21. Randall, L. L. & Hardy, S. J. S. Cell 46, 921–928 (1986).

    Article  CAS  Google Scholar 

  22. Zimmermann, R. & Meyer, D. I. Trends biochem. Sci. 11, 512–515 (1986).

    Article  CAS  Google Scholar 

  23. Vestweber, D. & Schatz, G. EMBO J. 7, 1147–1151 (1988).

    Article  CAS  Google Scholar 

  24. Eilers, M., Hwang, S. & Schatz, G. EMBO J. 7, 1139–1145 (1988).

    Article  CAS  Google Scholar 

  25. Bhakdi, S. & Tranum-Jensen. J. Rev. Physiol. Biochem. Pharmac. 107, 148–106 (1987).

    Google Scholar 

  26. Wickner, W. Biochemistry 27, 1081–1086 (1988).

    Article  CAS  Google Scholar 

  27. Lesk, A. M. & Hardman, K. D. Science 216, 539–540 (1982).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parker, M., Pattus, F., Tucker, A. et al. Structure of the membrane-pore-forming fragment of colicin A. Nature 337, 93–96 (1989). https://doi.org/10.1038/337093a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/337093a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing