Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli

Abstract

Assembly of foreign prokaryotic ribulose bisphosphate carboxylases (Rubiscos) in Escherichia coli requires both heat-shock proteins groEL and groES. GroEL is related to a chloroplast protein implicated in Rubisco assembly. Bacteria and chloroplasts therefore have a conserved mechanism that uses auxiliary proteins to assist in the assembly of Rubisco.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hemmingsen, S. et al. Nature 333, 330–334 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Pelham, H. R. B. Cell 46, 959–961 (1986).

    Article  CAS  Google Scholar 

  3. Ellis, R. J. Nature 328, 378–379 (1987).

    Article  ADS  CAS  Google Scholar 

  4. Pelham, H. R. B. Nature 332, 776–777 (1988).

    Article  ADS  CAS  Google Scholar 

  5. Mehra, V. et al. Proc. natn. Acad. Sci. U.S.A. 83, 7013–7017 (1986).

    Article  ADS  CAS  Google Scholar 

  6. Vodkin, M. H. & Williams, J. C. J. Bact. 170, 1227–1234 (1988).

    Article  CAS  Google Scholar 

  7. McMullin, T. W. & Hallberg, R. L. Molec. cell. Biol. 8, 371–380 (1988).

    Article  CAS  Google Scholar 

  8. Georgopoulos, C. P. & Hohn, B. Proc. natn. Acad. Sci. U.S.A. 75, 131–135 (1978).

    Article  ADS  CAS  Google Scholar 

  9. Zweig, M. & Cummings, D. J. J. molec. Biol. 80, 505–518 (1973).

    Article  CAS  Google Scholar 

  10. Sternberg, N. J. molec. Biol. 76, 25–44 (1973).

    Article  CAS  Google Scholar 

  11. Kochan, J. & Murialdo, H. Virology 131, 100–115 (1983).

    Article  CAS  Google Scholar 

  12. Tilly, K. et al. Proc. natn. Acad. Sci. U.S.A. 78, 1629–1633 (1981).

    Article  ADS  CAS  Google Scholar 

  13. Fayet, O., Louarn, J-M. & Georgopoulos, C. Molec. Gen. Genet. 202, 435–445 (1986).

    Article  CAS  Google Scholar 

  14. Jenkins, A. J. et al. Molec. Gen. Genet. 202, 446–454 (1986).

    Article  CAS  Google Scholar 

  15. Barraclough, R. & Ellis, R. J. Biochim. biophys. Acta 608, 19–31 (1980).

    Article  CAS  Google Scholar 

  16. Roy, H. et al. J. Cell Biol. 94, 20–27 (1982).

    Article  CAS  Google Scholar 

  17. Galenby, A. A. et al. EMBO J. 7, 1307–1314 (1988).

    Article  Google Scholar 

  18. Pushkin, A. V. et al. Biochim. biophys. Acta 704, 379–384 (1982).

    Article  CAS  Google Scholar 

  19. Gutteridge, S. & Gatenby, A. A. in Oxford Surveys of Plant Molecular and Cell Biology (ed Miflin, B. J.) 95–135 (Oxford University Press, Oxford, 1987).

    Google Scholar 

  20. Ellis, R. J. & van der Vies, S. M. Photosynthesis Res. 16, 101–115 (1988).

    Article  CAS  Google Scholar 

  21. Roy, H. & Cannon, S. Trends biochem. Sci. 13, 163–165 (1988).

    Article  CAS  Google Scholar 

  22. Miziorko, H. M. & Lorimer, G. H. A. Rev. Biochem. 52, 507–535 (1983).

    Article  CAS  Google Scholar 

  23. Andrews, T. J. & Lorimer, G. H. in The Biochemistry of Plants (ed Hatch, M. D.) 131–218 (Academic, New York, 1987).

    Google Scholar 

  24. Tabita, F. R. & McFadden, B. A. J. biol. Chem. 249, 3459–3464 (1974).

    CAS  PubMed  Google Scholar 

  25. Schneider, G. et al. EMBO J. 5, 3409–3415 (1986).

    Article  CAS  Google Scholar 

  26. Chapman, M. S. et al. Nature 329, 354–356 (1988).

    Article  ADS  Google Scholar 

  27. Andersson, I. A. et al. Nature (in the press).

  28. Chapman, M. S. et al. Science 241, 71–74 (1988).

    Article  ADS  CAS  Google Scholar 

  29. Somerville, C. R. & Somerville, S. C. Molec. Gen. Genet. 193, 214–219 (1984).

    Article  CAS  Google Scholar 

  30. Gatenby, A. A., van der Vies, S. M. & Bradley, D. Nature 314, 617–620 (1985).

    Article  ADS  CAS  Google Scholar 

  31. van der Vies, S. M., Bradley, D. & Gatenby, A. A. EMBO J. 5, 2439–2444 (1986).

    Article  CAS  Google Scholar 

  32. Tabita, F. R. & Small, C. L. Proc. natn. Acad. Sci. U.S.A. 82, 6100–6103 (1985).

    Article  ADS  CAS  Google Scholar 

  33. Pierce, J., Tolbert, N. E. & Barker, R. J. Biochemistry 19, 934–942 (1980).

    Article  CAS  Google Scholar 

  34. Andrews, T. J. J. biol. Chem. 263, 12213–12219 (1988).

    CAS  PubMed  Google Scholar 

  35. Cowing, D. W. et al. Proc. natn. Acad. Sci. U.S.A. 82, 2679–2683 (1986).

    Article  ADS  Google Scholar 

  36. Andrews, T. J. & Ballment, B. J. biol. Chem. 258, 7514–7518 (1983).

    CAS  Google Scholar 

  37. Gutteridge, S., Lorimer, G. H. & Pierce, J. Pl. Physiol. Biochem. 26 (in the press).

  38. Norrander, J., Kempe, T. & Messing, J. Gene 26, 101–106 (1983).

    Article  CAS  Google Scholar 

  39. Vieira, J. & Messing, J. Gene 19, 259–268 (1982).

    Article  CAS  Google Scholar 

  40. Chang, A. C. Y. & Cohen, S. N. J. Bact. 134, 1141–1156 (1978).

    CAS  Google Scholar 

  41. Casadaban, M. & Cohen, S. N. J. molec. Biol. 138, 179–207 (1980).

    Article  CAS  Google Scholar 

  42. Hendrix, R. W. J. molec. Biol. 129, 375–392 (1979).

    Article  CAS  Google Scholar 

  43. Lorimer, G. H., Badger, M. R. & Andrews, T. J. Biochemistry 15, 529–536 (1976).

    Article  CAS  Google Scholar 

  44. Hall, N. P., Pierce, J. & Tolbert, N. E. Archs. Biochem. Biophys. 212, 115–119 (1987).

    Article  Google Scholar 

  45. Takani, T. & Kakefuda, T. Nature 239, 34–37 (1972).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goloubinoff, P., Gatenby, A. & Lorimer, G. GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli. Nature 337, 44–47 (1989). https://doi.org/10.1038/337044a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/337044a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing