Abstract
Embryonic stem (ES) cells, the totipotent outgrowths of bias-tocysts1,2, can be cultured and manipulated in vitro and then returned to the embryonic environment where they develop normally and can contribute to all cell lineages3–9. Maintenance of the stem-cell phenotype in vitro requires the presence of a feeder layer of fibroblasts1,2,10 or of a soluble factor, differentiation inhibitory activity (DIA) produced by a number of sources5,11,12; in the absence of DIA the ES cells differentiate into a wide variety of cell types. We recently noted several similarities between partially purified DIA and a haemopoietic regulator, myeloid leukaemia inhibitory factor (LIF), a molecule which induces differentiation in Ml myeloid leukaemic cells and which we have recently purified, cloned and characterized13–18. We demonstrate here that purified, recombinant LIF can substitute for DIA in the maintenance of totipotent ES cell lines that retain the potential to form chimaeric mice.
This is a preview of subscription content
Access options
Subscribe to Journal
Get full journal access for 1 year
$199.00
only $3.90 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.
References
Evans, M. J. & Kaufman, M. H. Nature 292, 154–156 (1981).
Martin, G. R. Proc. natn. Acad. Sci. U.S.A. 78, 7634–7638 (1981).
Bradley, A., Evans, M., Kaufman, M. H. & Robertson, E. Nature 309, 255–256 (1984).
Robertson, E. J., Bradley, A., Kuehn, M. & Evans, M. Nature 323, 445–448 (1986).
Hooper, M., Hardy, K., Handyside, A., Hunter, S. & Monk, M. Nature 326, 292–295 (1987).
Kuehn, M. R., Bradley, A., Robertson, E. J. & Evans, M. J. Nature 326, 295–298 (1987).
Williams, R. L., Courtneidge, S. A. & Wagner, E. F. Cell 52, 121–131 (1988).
Stewart, C. L., Vanek, M. & Wagner, E. F. EMBO J. 4, 383–388 (1985).
Gossler, A., Doetschmann, T., Korn, R., Serfling, E. & Kemler, R. Proc. natn. Acad. Sci. U.S.A. 83, 9065–9069 (1986).
Martin, G. R. & Evans, M. J. Proc. natn. Acad. Sci. U.S.A. 72, 1441–1445 (1975).
Smith, A. G. & Hooper, M. L. Devl Biol. 121, 1–9 (1987).
Koopman, P. & Cotton, R. G. H. Exptl Cell Res. 154, 233–242 (1984).
Gearing, D. P. et al. EMBO J. 6, 3995–4002 (1987).
Gough, N. M. et al. Proc. natn. Acad. Sci. U.S.A. 85, 2623–2627 (1988).
Hilton, D. J., Nicola, N. A., Gough, N. M. & Metcalf, D. J. biol. Chem. 263, 9238–9443 (1988).
Metcalf, D., Hilton, D. J. & Nicola, N. A. Leukaemia 2, 216–221 (1988).
Hilton, D. J., Nicola, N. A. & Metcalf, D. Analyt. Biochem. 173, 359–367 (1988).
Simpson, R. J. et al. Eur. J. Biochem. 175, 541–547 (1988).
Hilton, D. J., Nicola, N. A. & Metcalf, D. Proc. natn. Acad. Sci. U.S.A. 85, 5971–5975 (1988).
Wagner, E. F., Keller, G., Gilboa, E., Rüther, U. & Stewart, C. Cold Spring Harb. Symp. quant. Biol. 50, 691–700 (1985).
Jakob, J., Bonn, T., Gaillard, J., Nicolas, J. F. & Jacob, F. Ann. Microbiol. (Inst. Pasteur) 124B, 269–282 (1973).
Rudnicki, M. A. & McBurney, M. W. in Teratocarcinomas and Embryonic Stem Cells, a Practical Approach (ed. E. J. Robertson) 19–49 (IRL, Oxford, 1987).
Doetschman, T., Eistetter, H., Katz, M., Schmidt, W. & Kemler, R. J. Embryol. exp. Morphol. 87, 27–45 (1985).
Dewey, M. J., Martin, D. W., Martin, G. R. & Mintz, B. Proc. natn. Acad. Sci. U.S.A. 74, 5564–5568 (1977).
Kemler, R. in Progress in Developmental Biology Band 26 (ed. Sauer, H. W.) 175 (Fisher, Stuttgart, 1980).
Thomas, K. R. & Capecchi, M. R. Cell 51, 503–512 (1987).
Doetschman, T. et al. Nature 330, 576–577 (1987).
Munson, P. J. & Rodbard, D. Analyt. Biochem. 107, 220–237 (1980).
Nicola, N. A. & Metcalf, D. J. cell. Physiol. 124, 313–321 (1985).
Smith, D. B. & Johnson, K. S. Gene 67, 31–40 (1988).
Smith, A. G. et al. Nature 336, 688–690 (1988).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Williams, R., Hilton, D., Pease, S. et al. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336, 684–687 (1988). https://doi.org/10.1038/336684a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/336684a0
Further reading
-
Filopodia rotate and coil by actively generating twist in their actin shaft
Nature Communications (2022)
-
Lima1 mediates the pluripotency control of membrane dynamics and cellular metabolism
Nature Communications (2022)
-
Identification of ALP+/CD73+ defining markers for enhanced osteogenic potential in human adipose-derived mesenchymal stromal cells by mass cytometry
Stem Cell Research & Therapy (2021)
-
STAT3 phosphorylation at Ser727 and Tyr705 differentially regulates the EMT–MET switch and cancer metastasis
Oncogene (2021)
-
Gadd45g initiates embryonic stem cell differentiation and inhibits breast cell carcinogenesis
Cell Death Discovery (2021)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.