Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Anomalous distribution of nuclear and mitochondrial DNA markers in periodical cicadas


Ecological genetics theory identifies the age at first reproduction and life-cycle length as important components of life-history strategies, and predicts that variation in these traits can have significant evolutionary consequences1. Changes in the timing of reproduction can affect the fitness of an organism2, disrupt gene flow3 and lead to speciation4. The existence of two life-cycle lengths differing by four years in periodical cicadas of the genus Magicicada provides an excellent opportunity to investigate both the control and evolutionary consequences of changes in the timing of reproduction. In Magicicada, life-cycle length has been assumed to be a genetically fixed species-specific trait5. Alternatively, however, periodical cicadas could switch between the two life-cycle lengths in response to either genetic6 or environmental7 factors possibly providing a mechanism for the generation of the extant year classes of cicadas8, called broods9. Here we describe a survey of populations of 13- and 17-year periodical cicadas which suggests that 13-year cicadas in a large region of central North America are descendents of 17-year cicadas that switched their life-cycle length to 13 years, providing the first strong genetic evidence that life-cycle length is a plastic trait. The change in maturation time and the resultant anomalous distribution of cytoplasmic and nuclear gene markers implies that these cicadas became temporally isolated from the parent brood, joined an already existing brood, and thus brought together two independently evolving gene pools.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Stearns, S. C. Q. Rev. Biol. 51, 3–47 (1976).

    CAS  Article  Google Scholar 

  2. 2

    Lewontin, R. C. in The Genetics of Colonizing Species (eds Baker, H. G. & Stebbins, G. L.) 77–94 (Academic, New York, 1965).

    Google Scholar 

  3. 3

    Dingle, H. & Hegmann, J. P. (eds) Evolution and Genetics of Life Histories (Springer, New York, 1982).

  4. 4

    Tauber, C. A. & Tauber, M. J. A. Rev. Ecol. Syst. 12, 281–308 (1981).

    Article  Google Scholar 

  5. 5

    Alexander, R. D. & Moore, T. A. Misc. Publs Mus. Zool. Univ. Mich. 121, 58 (1962).

    Google Scholar 

  6. 6

    Lloyd, M., Kritsky, G. & Simon, C. Evolution 37, 1162–1180 (1983).

    CAS  Article  Google Scholar 

  7. 7

    Lloyd, M. & White, J. Evolution 30, 786–801 (1976).

    Article  Google Scholar 

  8. 8

    Lloyd, M. & Dybas, H. S. Evolution 20, 466–505 (1966).

    Article  Google Scholar 

  9. 9

    Marlatt, C. L. Misc. Res. Work Div. Ent. Bull. U.S.D.A. Div. Ent. 18, 52–58 (1898).

    Google Scholar 

  10. 10

    Simon, C. Syst. Zool. 28, 22–39 (1979).

    CAS  Article  Google Scholar 

  11. 11

    Archie, J., Simon, C. & Wartenberg, D. Evolution 39, 1261–1274 (1985).

    Article  Google Scholar 

  12. 12

    Sokal, R. R. & Rohlf, F. J. Biometry, 776 (Freeman, San Francisco, 1969).

    Google Scholar 

  13. 13

    Haseman, L. U. Missouri Agric. Exper. Sta. Bull. 137, 33 (1915).

    Google Scholar 

  14. 14

    Hyslop, J. A. U.S.D.A. Bur. Ent. Plant Quart. E-364, 7 (1935).

    Google Scholar 

  15. 15

    Hewitt, G. M. Trends Ecol. Evol. 3, 158–167 (1988).

    CAS  Article  Google Scholar 

  16. 16

    Simon, C., Lloyd, M. & Karban, R. Ecology 62, 1525–1535 (1981).

    Article  Google Scholar 

  17. 17

    White, J. & Strehl, C. E. Ecol. Ent. 3, 323–327 (1978).

    Article  Google Scholar 

  18. 18

    Dybas, H. & Davis, D. Ecology 43, 444–459 (1962).

    Article  Google Scholar 

  19. 19

    White, J. & Lloyd, M. Am. Midl. Nat. 94, 127–143 (1975).

    Article  Google Scholar 

  20. 20

    Simon, C. Proc. Ent. Soc. Am. 34, (in the press).

  21. 21

    Kritsky, G. Proc. Indian Acad. Sci. (in the press).

  22. 22

    Kritsky, G. Ohio J. Sci. 88, 168–170 (1988).

    Google Scholar 

  23. 23

    Lawlor, L. & Venable, L. Oecologia 46, 272–282 (1980).

    ADS  Article  Google Scholar 

  24. 24

    Lansman, R. A., Shade, R. O., Shapira, J. F. & Avise, J. C. J. Molec. Evol. 17, 214–226 (1981).

    ADS  CAS  Article  Google Scholar 

  25. 25

    Nei, M. & Tajima, F. Genetics 105, 207–217 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Martin, A., Simon, C. Anomalous distribution of nuclear and mitochondrial DNA markers in periodical cicadas. Nature 336, 237–239 (1988).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing