Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dissipation and noise immunity in computation and communication

Abstract

Reversible computers which carry out each step without discarding information can, in principle, dissipate arbitrarily small amounts of energy per step if the computation is carried out sufficiently slowly. This has caused a re-examination of energy requirements in communication and measurement. There also, it is only those steps that discard information which have a lower limit on energy consumption. Such steps can be avoided in the transmission of information.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Keyes, R. W. IBM J. Res. Dev. 32, 24–28 (1988).

    Article  CAS  Google Scholar 

  2. Shannon, C. E. Bell Syst. tech. J. 27, 379–423, 623–656 (1948).

    Article  Google Scholar 

  3. Brillouin, L. Science and Information Theory 267–286 (Academic Press, New York, 1956).

    MATH  Google Scholar 

  4. Maxwell, J. C. Theory of Heat 1st edn (Longmans Green, London, 1871).

    Google Scholar 

  5. Landauer, R. IBM J. Res. Dev. 5, 183–191 (1961).

    Article  Google Scholar 

  6. Bennett, C. H. IBM J. Res. Dev. 17, 525–532 (1973).

    Article  Google Scholar 

  7. Bennett, C. H. Int. J. theor. Phys. 21, 905–940 (1982).

    Article  CAS  Google Scholar 

  8. Landauer, R. in Der Informationsbegriff in Technik und Wissenschaft (eds Folberth, O. G. & Hackl, C.) 139–158 (Oldenbourg, Munich, 1986).

    Google Scholar 

  9. Wright, R. The Atlantic 261, 29–44 (April, 1988).

    Google Scholar 

  10. Fredkin, E. & Toffoli, T. Int. J. theor. Phys. 21, 219–253 (1982).

    Article  Google Scholar 

  11. Landauer, R. Ber Bunsenges 80, 1048–1059 (1976).

    Article  Google Scholar 

  12. Landauer, R. Int. J. theor. Phys. 21, 283–297 (1982).

    Article  Google Scholar 

  13. von Neumann, J. Non-linear Capacitance or Inductance Switching, Amplifying and Memory Organs (US Patent 2,815,488).

  14. Goto, E. J. electl Commun. Engrs Japan 38, 770–775 (1955).

    Google Scholar 

  15. Likharev, K. K. Int. J. theor. Phys. 21, 311–326 (1982).

    Article  Google Scholar 

  16. Likharev, K. K., Rylov, S. V. & Semenov, V. K. IEEE Trans. Magn. 21, 947–950 (1985).

    Article  ADS  Google Scholar 

  17. Landauer, R. & Büttiker, M. Phys. Scripta T9, 155–164 (1985).

    Article  ADS  Google Scholar 

  18. Bennett, C. H. IBM J. Res. Dev. 32, 16–23 (1988).

    Article  Google Scholar 

  19. Bennett, C. H. Sci. Am. 255, 107–116 (1987).

    Google Scholar 

  20. Kuhn, H. IBM J. Res. Dev. 32, 37–46 (1988).

    Article  CAS  Google Scholar 

  21. Kondepudi, D. K., Moss, F. & McClintock, P. V. E. Physica D 21, 296–306 (1986).

    Google Scholar 

  22. Zurek, W. H. in Frontiers of Nonequilibrium Statistical Physics (eds Moore, G. T. & Scully, M. O.) 151–161 (Plenum, New York, 1986).

    Book  Google Scholar 

  23. Lubkin, E. Int. J. theor. Phys. 26, 523–535 (1987).

    Article  MathSciNet  Google Scholar 

  24. Landauer, R. in Signal Processing (ed. Haykin, S.) (Prentice-Hall, New Jersey, in the press).

  25. Greenberger, D. M. (ed. New Techniques and Ideas in Quantum Measurement Theory (Ann. New York Acad. Sci., 1986).

  26. Roth, M. & lnomata, A. (eds) Fundamental Questions in Quantum Mechanics (Gordon & Breach, New York, 1986).

  27. Bennett, C. H. & Landauer, R. Sci. Am. 253(7), 48–56 (1985).

    Article  ADS  Google Scholar 

  28. Szilard, L. Z. Phys. 53, 840–856 (1929).

    Article  ADS  CAS  Google Scholar 

  29. Gabor, D. in Progress in Optics Vol. 1 (ed. Wolf, E.) 109–153 (North-Holland, Amsterdam, 1961).

    Google Scholar 

  30. Daub, E. E. Hist. Phil. Sci. 1, 213–227 (1970).

    Article  Google Scholar 

  31. Landauer, R. Found. Phys. 16, 551–564 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  32. Deutsch, D. Proc. R. Soc. Lond. A 400, 97–117 (1985).

    Article  ADS  Google Scholar 

  33. Streda, P., Kucera, J. & MacDonald, A. H. Phys. Rev. Lett. 59, 1973–1975 (1987).

    Article  ADS  CAS  Google Scholar 

  34. Pendry, J. B. J. Phys. A 16, 2161–2171 (1983).

    ADS  MathSciNet  Google Scholar 

  35. Bekenstein, J. D. Phys. Rev. A 37, 3437–3449 (1988).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  36. Landauer, R. Appl. Phys. Lett. 51, 2056–2058 (1987).

    Article  ADS  Google Scholar 

  37. Sturge, M. D. in No Way (eds Davis, P. J. & Park, D.) 111–138 (Freeman, New York, 1987).

    Google Scholar 

  38. Landauer, R. Speculations in Science and Technology 10, 292–302 (1987).

    Google Scholar 

  39. Landauer, R. Phys. Scripta 35, 88–95 (1987).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Landauer, R. Dissipation and noise immunity in computation and communication. Nature 335, 779–784 (1988). https://doi.org/10.1038/335779a0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/335779a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing