Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/Turonian boundary

Abstract

Perhaps the most significant event in the Cretaceous record of the carbon isotope composition of carbonate1,2, other than the 1–2.5 ‰ negative shift in the carbon isotope composition of calcareous plankton at the Cretaceous/Tertiary boundary3, is the rapid global positive excursion of 2 ‰ (13C enrichment) which took place between 91.5 Myr and 90.3 Myr (late Cenomanian to earliest Turonian (C/T boundary event))1,4,5. This excursion has been attributed to a change in the isotope composition of the marine total dissolved carbon (TDC) reservoir resulting from an increase in rate of burial of 13C-depleted organic carbon, which coincided with a major global rise in sea level5 during the so-called C/T oceanic anoxic event (OAE)6. Here we present new data, from nine localities, which demonstrate that a positive excursion in the carbon isotope composition of organic carbon at or near the C/T boundary7,8 is nearly synchronous with that for carbonate and is widespread throughout the Tethys and Atlantic basins (Fig. 1), as well as in more high-latitude epicontinental seas. The postulated increase in the rate of burial of organic carbon may have had a significant effect on CO2 and O2 concentrations in the oceans and atmosphere, and consequent effects on global climate and sedimentary facies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Scholle, P. A. & Arthur, M. A. Bull. Am. Ass. Petrol. Geol. 64, 67–87 (1980).

    CAS  Google Scholar 

  2. Arthur, M. A., Dean, W. E. & Schlanger, S. O. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present (eds Sundquist, E. T. & Broecker, W. S.) 504–530 (Am. Geophys. Un. Washington, Monograph 32, 1985).

    Google Scholar 

  3. Zachos, J. C. & Arthur, M. A. Paleoceanography 1, 5–26 (1986).

    Article  ADS  Google Scholar 

  4. Schlanger, S. O., Arthur, M. A., Jenkyns, H. C. & Scholle, P. A. in Marine Petroleum Source Rocks (eds Brooks, J. & Fleet, A. J.) 371–399 (Geol. Soc. London, spec. Publn 26, 1987).

    Google Scholar 

  5. Arthur, M. A., Schlanger, S. O. & Jenkyns, H. C. in Marine Petroleum Source Rocks (eds Brooks, J. & Fleet, A. J.) 401–420 (Geol. Soc. London, spec. Publn 26, 1987).

    Google Scholar 

  6. Schlanger, S. O. & Jenkyns, H. C. Geol. Mijnbouw 55, 179–184 (1976).

    Google Scholar 

  7. Pratt, L. M. in Fine-Grained Deposits and Biofacies of the Cretaceous Western Interior Seaway: Evidence of Cyclic Sedimentary Processes (eds Pratt, L. M., Kauffman, E. G. & Zelt, F. B.) 38–48 (Soc. Econ. Paleontol. Miner., Tulsa, 1985).

    Book  Google Scholar 

  8. Pratt, L. M. & Threlkeld, C. N. in Mesozoic of Middle North America (eds Stott, D. F. & Glass, D. J.) 305–312 (Can. Soc. Petrol. Geol., Memoir 9, 1984).

    Google Scholar 

  9. Bralower, T. J., Paleoceanography (in the press).

  10. Fine-Grained Deposits and Biofacies of the Cretaceous Western Interior Seaway: Evidence of Cyclic Sedimentary Processes (eds Pratt, L. M., Kauffman, E. G. & Zelt, F. B.) (Soc. Econ. Paleontol. Miner., Tulsa, 1985).

    Google Scholar 

  11. Ernst, G., Schmid, F. & Klischies, G. in Aspeckte de Kreide Europas (ed. Wiedmann, J.) 11–46 (Int. Un. geol. Sci. Ser. A. No. 6, 1979).

    Google Scholar 

  12. Arthur, M. A. & Premoli-Silva, I. in Nature and Origin of Cretaceous Carbon-Rich Facies (eds Schlanger, S. O. & Cita, M. B.) 7–54 (Academic, London, 1982).

    Google Scholar 

  13. Arthur, M. A., Dean, W. E. & Claypool, G. E. Nature 315, 216–218 (1985).

    Article  ADS  CAS  Google Scholar 

  14. Dean, W. E., Arthur, M. A. & Claypool, G. E. Mar. Geol. 70, 119–157 (1986).

    Article  ADS  CAS  Google Scholar 

  15. Deines, P. in Handbook of Environmental Isotope Geochemistry, Vol. 1, (eds Fritz, P. & Fontes, J. C.) 329–406 (Elsevier, Amsterdam, 1980).

    Google Scholar 

  16. Herbin, J. P. et al. in North Atlantic Palaeoceanography (eds Summerhayes, C. P. & Shackleton, N. J.) 389–422 (Geol. Soc. Lond. spec. Publn 21, 1986).

    Google Scholar 

  17. Graas, G. van, Viets, T. C., de Leeuw, J. W. & Schenck, P. A. Geochim. cosmochim. Acta 47, 1051–1059.

  18. Pratt, L. M. Bull. Am. Ass. Petrol. Geol. 68, 11467–1159 (1984).

    Google Scholar 

  19. Lasaga, A. C., Berner, R. A. & Garrels, R. M. in Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present (eds Sundquist, E. T. & Broecker, W. S.) 397–411 (Am. Geophys. Un. Washington, Monograph 32, 1985).

    Google Scholar 

  20. Schlanger, S. O. in Mesozoic and Cenozoic Oceans (ed. Hsü, K. J.) (Am. Geophys. Un. Geodyn. Ser. 15, (1986).

    Google Scholar 

  21. Jenkyns, H. C. & Clayton, C. J. Sedimenlology 33, 87–106 (1986).

    Article  ADS  CAS  Google Scholar 

  22. Berner, R. A. Am. J. Sci. 287, 177–196 (1987).

    Article  ADS  CAS  Google Scholar 

  23. Jenkyns, H. C. J. geol. Soc. Lond. 137, 171–188 (1980).

    Article  Google Scholar 

  24. De Graciansky, P. C. et al. in Marine Petroleum Source Rocks (eds Brooks, J. & Fleet, A. J.) 317–344 (Geol. Soc. Lond., spec. Publn 26, 1987).

    Google Scholar 

  25. Barron, E. J. & Washington, W. M. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present (eds Sundquist, E. T. & Broecker, W. S.) 504–529 (Am. Geophys. Un. Washington, Monograph 32, 1985).

    Google Scholar 

  26. Kuhnt, W., Thurow, J. & Wiedman, J. Mitt. Geol.-Paläontol. Inst. Univ. Hamburg, SCOPE/UNEP 60, 205–246 (1986).

    Google Scholar 

  27. Hut, P. et al. Nature 329, 118–126 (1987).

    Article  ADS  Google Scholar 

  28. Kump, L. R. & Garrels, R. M. Am. J. Sci. 286, 337–360 (1986).

    Article  ADS  CAS  Google Scholar 

  29. Jansa, L. F., Enos, P., Tucholke, B. E., Gradstein, F. M. & Sheridan, R. E. in Deep Drilling Results in the Atlantic Ocean: Continental Margins and Paleoenvironments (eds Talwani, M., Hay, W. W. & Ryan, W. B. F.) 1–5 (Am. Geophys. Un. Maurice Ewing Ser. 3, 1979).

    Book  Google Scholar 

  30. Berner, R. A. & Landis, G. P. Geol. Soc. Am. Abs. Prog. 19, 587 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arthur, M., Dean, W. & Pratt, L. Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/Turonian boundary. Nature 335, 714–717 (1988). https://doi.org/10.1038/335714a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/335714a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing