Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Hydroxy-aluminosilicate interlayers in montmorillonite: implications for acidic environments

Abstract

Hydroxy-aluminosilicate (HAS) ions are one of the major forms of soluble aluminium and the precursor of non-crystalline aluminosilicates in acidic (pH<5.5) environments1–6. Acidification in acid-vulnerable areas7,8 would thus promote HAS formation. Over four decades the study of interactions of soluble aluminium species with clay minerals has been focused on the deposition of hydroxy-aluminium in interlayer spaces of expandable layer silicates9–12. Although the synthesis of 'hydroxy-silicoaluminium pillared smectites' as cracking catalysts has been recently attempted13, the nature of the dominant species adsorbed by smectites from the mixture of HAS, hydroxy-aluminium ions and silicic acid remains obscure. Here we provide evidence that HAS ions can be adsorbed in the interlayer spaces of montmorillonite, resulting in an expanded structure, and so the natural occurrence of HAS-interlayered layer silicates merits attention. Furthermore, the transport of HAS ions, their transformation to non-crystalline aluminosilicates and the levels of toxic solution aluminium species in acidic terrestrial and aquatic environments can thus be affected by naturally occurring expandable layer silicates such as montmorillonite.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wada, S.-I. & Wada, K. J. Soil. Sci. 31, 457–467 (1980).

    Article  CAS  Google Scholar 

  2. Farmer, V. C., Fraser, A. R. & Tait, J. M. Geochim. cosmochim. Acta 43, 1417–1420 (1979).

    Article  ADS  CAS  Google Scholar 

  3. Fanner, V. C., Russell, J. D. & Berrow, M. L. J. Soil. Sci. 31, 673–684 (1980).

    Article  Google Scholar 

  4. Farmer, V. C. & Fraser, A. R. in Proc. Int. Clay Conf. 1978 (eds Mortland, M. M. & Farmer, V. C.) 457–553 (Elsevier, Amsterdam, 1979).

    Google Scholar 

  5. Wada, S.-I., Eto, A. & Wada, K. J. Soil. Sci. 30, 347–355 (1979).

    Article  CAS  Google Scholar 

  6. Inoue, K. & Huang, P. M. Nature 308, 58–60 (1984).

    Article  ADS  CAS  Google Scholar 

  7. Burrows, W. D. CRC Crit. Rev. envir. Contr. 7, 167–216 (1977).

    Article  CAS  Google Scholar 

  8. Schindler, D. W. Science 239, 149–157 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Pearson, R. W. & Ensminger, L. E. Soil Sci. Soc. Am. Proc. 13, 153–156 (1949).

    Article  ADS  CAS  Google Scholar 

  10. Sawhney, B. L. Nature 182, 1595–1596 (1958).

    Article  ADS  CAS  Google Scholar 

  11. Rich, C. I. Clays Clay Miner. 16, 15–30 (1968).

    Article  ADS  Google Scholar 

  12. Barnhisel, R. I. in Minerals in Soil Environments (eds Dixon, J. B. & Weed, S. B.) 331–356 (Soil Sci. Soc. Am., Madison, 1977).

    Google Scholar 

  13. Sterte, J. & Shabtai, J. Clays Clay Miner. 35, 429–439 (1987).

    Article  ADS  CAS  Google Scholar 

  14. Farmer, V. C. et al. Clay Miner. 13, 271–274 (1978).

    Article  ADS  CAS  Google Scholar 

  15. Beckwith, R. S. & Reeve, R. Aust. J. Soil Res. 1, 157–168 (1963).

    Article  CAS  Google Scholar 

  16. White, J. L. Soil Sci. 112, 22–31 (1971).

    Article  ADS  CAS  Google Scholar 

  17. Higashi, T. Pedologie 32, 5–18 (1982).

    CAS  Google Scholar 

  18. Wada, K. & Tokashiki, Y. Geoderma 7, 199–213 (1972).

    Article  ADS  CAS  Google Scholar 

  19. Farmer, V. C., Russell, J. D. & Smith, B. F. L. J. Soil Sci. 34, 571–576 (1983).

    Article  CAS  Google Scholar 

  20. Brydon, J. E. & Kodama, H. Am. Miner. 51, 875–889 (1966).

    CAS  Google Scholar 

  21. Ahlrichs, J. L. Clays Clay Miner. 16, 63–71 (1968).

    Article  ADS  Google Scholar 

  22. Cradwick, P. D. G. et al. Nature 240, 187–189 (1972).

    Article  ADS  CAS  Google Scholar 

  23. Huang, P. M. in Systems and Control Encyclopedia (ed. Singh, M. G.) 262–268 (Pergamon, Oxford, 1987).

    Google Scholar 

  24. Dixon, J. B. & Jackson, M. L. Science 129, 1616–1617 (1959).

    Article  ADS  CAS  Google Scholar 

  25. Dixon, J. B. & Jackson, M. L. Soil Sci. Soc. Am. Proc. 26, 358–362 (1962).

    Article  ADS  CAS  Google Scholar 

  26. Luciuk, G. M. & Huang, P. M. Soil Sci. Soc. Am. Proc. 38, 235–244 (1974).

    Article  ADS  CAS  Google Scholar 

  27. Weaver, R. M., Syers, J. K. & Jackson, M. L. Soil Sci. Soc. Am. Proc. 32, 497–501 (1968).

    Article  ADS  CAS  Google Scholar 

  28. Hsu, P. H. Soil Sci. 112, 22–31 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lou, G., Huang, P. Hydroxy-aluminosilicate interlayers in montmorillonite: implications for acidic environments. Nature 335, 625–627 (1988). https://doi.org/10.1038/335625a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/335625a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing