Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Trans splicing involves a novel form of small nuclear ribonucleoprotein particles

Abstract

The trans-splicing reaction occurring in trypanosomes and related species1–4 as well as in the nematode Caenorhabditis elegans5 involves the transfer of a 5' exon from a spliced leader transcript (SL RNA) to a precursor messenger RNA transcript with a 3' splice acceptor site. This seems to take place in the same nuclear compartment as normal cis splicing and proceeds through Y-branched intermediates6,7 analogous to the lariats formed in cis splicing. The cellular machinery catalysing cis and trans splicing8,9,10 might therefore be expected to share some components, particularly in the nematode where some mRNAs are produced by both cis and trans splicing5. We generated possible secondary structures for the SL RNAs of several species and found they were remarkably similar although neither nucleotide sequence nor length is conserved. Each contained three stem-loops; strikingly the 5' splice site is adjacent to the turn of the most 5' loop and an Sm-binding consensus sequence11 is found between the second and third stem-loops. Sm is an antigen associated with small nuclear ribonucleoprotein particles (snRNPs). When incubated in HeLa cell nuclear extracts, SL RNAs become immunoprecipitable by anti-Sm, but not by other autoantibodies directed against proteins of mammalian snRNPs12,13. We propose that SL RNAs have a dual function in the trans splicing process: they consist of a 5' exon covalently linked to an snRNA-like sequence and seem likely to exist as Sm snRNP particles (SL snRNPs) within the cell. Just as the RNA in the U1 snRNP base-pairs with the 5' splice site14,15, rendering it susceptible to attack in the cis-splicing reaction16, so might the SL snRNP autonomously activate its own 5' splice site and thereby eliminate the need for a U1-like snRNP in the trans-splicing machinery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Milhausen, M., Nelson, R. G., Sather, S., Selkirk, M. & Agabian, N. Cell 38, 721–729 (1984).

    Article  CAS  Google Scholar 

  2. De Lange, T. et al. Nucleic Acids Res. 12, 4431–4443 (1984).

    Article  CAS  Google Scholar 

  3. Miller, S. I., Landfear, S. M. & Wirth, D. F. Nucleic Acids Res. 14, 7341–7360 (1986).

    Article  CAS  Google Scholar 

  4. Muhich, M. L., Hughes, D. E., Simpson, A. M. & Simpson, L. Nucleic Acids Res. 15, 3141–3153 (1987).

    Article  CAS  Google Scholar 

  5. Krause, M. & Hirsh, D. Cell 49, 753–761 (1987).

    Article  CAS  Google Scholar 

  6. Murphy, W. J., Watkins, K. P. & Agabian, N. Cell 47, 517–525 (1986).

    Article  CAS  Google Scholar 

  7. Sutton, R. E. & Boothroyd, J. C. Cell 47, 527–535 (1986).

    Article  CAS  Google Scholar 

  8. Sharp, P. A. Cell 50, 147–148 (1987).

    Article  CAS  Google Scholar 

  9. Maniatis, T. & Reed, R. Nature 325, 673–678 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Steilz, J. A. et al. in Small Nuclear Ribonucleoprotein Particles (ed. Birnstiel, M. L.) 115–154 (Springer, Berlin, 1988).

    Google Scholar 

  11. Mattaj, I. W. in Small Nuclear Ribonucleoprotein Particles (ed. Birnstiel, M. L.) 100–114 (Springer, Berlin, 1988).

    Book  Google Scholar 

  12. Lerner, M. R. & Steitz, J. A. Proc. natn. Acad. Sci. U.S.A. 76, 5495–5499 (1979).

    Article  ADS  CAS  Google Scholar 

  13. Lührmann, R. in Small Nuclear Ribonucleoprotein Panicles (ed. Birnstiel, M. L.) (Springer, Berlin, 1988).

    Google Scholar 

  14. Mount, S. M., Pettersson, I., Hinterberger, M., Karmas, A. & Steitz, J. A. Cell 33, 509–518 (1983).

    Article  CAS  Google Scholar 

  15. Zhuang, Y. & Weiner, A. M. Cell 46, 827–835 (1986).

    Article  CAS  Google Scholar 

  16. Aebi, M., Hornig, H. & Weissmann, C. Cell 50, 237–246 (1987).

    Article  CAS  Google Scholar 

  17. Lerner, M. R., Boyle, J. A., Mount, S. M., Wolin, S. L. & Steitz, J. A. Nature 283, 220–224 (1980).

    Article  ADS  CAS  Google Scholar 

  18. Patton, J. R., Patterson, R. J. & Pederson, T. Molec. Cell. Biol. 7, 4030–4037 (1987).

    Article  CAS  Google Scholar 

  19. Lerner, E. A., Lerner, M. R., Janeway, C. A. Jr & Steitz, J. A. Proc. natn. Acad. Sci. U.S.A. 78, 2737–2741 (1981).

    Article  ADS  CAS  Google Scholar 

  20. Reddy, R. & Busch, H. in Small Nuclear Ribonucleoprotein Particles (ed. Birnstiel, M. L.) 1–37 (Springer, Berlin, 1988).

    Book  Google Scholar 

  21. Van Doren, K. & Hirsh, D. Nature in this issue.

  22. Thomas, J. D., Conrad, R. C. & Blumenthal, T. Cell 54, 533–539 (1988).

    Article  CAS  Google Scholar 

  23. Riedel, N., Wolin, S. & Guthrie, C. Science 235, 328–331 (1987).

    Article  ADS  CAS  Google Scholar 

  24. Tollervey, D. & Mattaj, I. W. EMBO J. 6, 469–476 (1987).

    Article  CAS  Google Scholar 

  25. Agabian, N., Perry, K. L. & Murphy, W. J. in Molecular Biology of RNA (eds Inouye, M. & Dudock, B. S.) 151–171 (Academic, New York, 1987).

    Book  Google Scholar 

  26. Miller, S. I. & Wirth, D. F. Molec. cell. Biol. 8, 2597–2603 (1988).

    Article  CAS  Google Scholar 

  27. Dahlberg, J. E. & Lund, E. in Small Nuclear Ribonucleoprotein Particles (ed. Birnstiel, M. L.) 38–70 (Springer, Berlin, 1988).

    Book  Google Scholar 

  28. Laird, P. W., Kooter, J. M., Loosbroek, N. & Borst, P. Nucleic Acids Res. 13, 4253–4266 (1985).

    Article  CAS  Google Scholar 

  29. Cech, T. R. Cell 44, 207–210 (1986).

    Article  CAS  Google Scholar 

  30. Inoue, T., Sullivan, F. X. & Cech, T. R. Cell 43, 431–437 (1985).

    Article  CAS  Google Scholar 

  31. Jacquier, A. & Michel, F. Cell 50, 17–29 (1987).

    Article  CAS  Google Scholar 

  32. Tschudi, C., Richards, F. F. & Ullu, E. Nucleic Acids Res. 14, 8893–8903 (1986).

    Article  CAS  Google Scholar 

  33. Parker, R., Siliciano, P. G. & Guthrie, C. Cell 49, 229–239 (1987).

    Article  CAS  Google Scholar 

  34. Layden, R. E. & Eisen, H. Molec. cell. Biol. 8, 1352–1360 (1988).

    Article  CAS  Google Scholar 

  35. Choquet, Y. et al. Cell 52, 903–913 (1988).

    Article  CAS  Google Scholar 

  36. Mottram, et al. Molec. cell. Biol. (in the press).

  37. Dignam, J. D., Lebovitz, R. M. & Roeder, R. G. Nucleic Acids Res. 11, 1475–1489 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruzik, J., Doren, K., Hirsh, D. et al. Trans splicing involves a novel form of small nuclear ribonucleoprotein particles. Nature 335, 559–562 (1988). https://doi.org/10.1038/335559a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/335559a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing