Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

High resolution structure of the RNA duplex [U(U-A)6A]2

Abstract

RNA is involved in many biological functions, ranging from information storage and transfer to the catalysis of reactions involving both nucleic acids and proteins. Previous crystallographic studies on RNA oligomeric chains provide only averaged structures1 or information limited in resolution2–4. The oligomer [U(U-A)6A]2 was chosen for the study of protein-RNA interactions in viruses. Its size and base composition mimic portions of the genomic RNA in alfalfa mosaic virus that bind to the amino terminus of the viral subunit5. The actual sequence was designed to guarantee the formation of a single species of duplex and to facilitate the production of the pure oligomer in large quantities. The molecular structure, derived from the 2.25 Å resolution X-ray diffraction data, allows the most detailed analysis of an A-RNA helix reported to date. Two kinks are observed that divide the duplex into three blocks, each close to a canonical A-helical conformation. A few inter-molecular hydrogen bonds involving 2′-hydroxy1 groups stabilize this peculiar conformation of the RNA , which may be related to the temperature used for the crystallization (35°C). The structure demonstrates both the plasticity of the RNA molecule and the role of the 2′-hydroxyl groups in intermolecular interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Arnott, S., Hukins, D. W. L., Dover, S. D., Fuller, W. & Hodgson, A. R. J. molec. Biol. 81, 107–122 (1973).

    Article  CAS  PubMed  Google Scholar 

  2. Sussman, J. L., Holbrook, S. R., Warrant, W. R., Church, G. M. & Kim, S.-H. J. molec. Biol. 123, 607–630 (1978).

    Article  CAS  PubMed  Google Scholar 

  3. Hingerty, B., Brown, R. S. & Jack, A. J. molec. Biol. 124, 523–534 (1978).

    Article  CAS  PubMed  Google Scholar 

  4. Westhof, E., Dumas, P. & Moras, D. J. molec. Biol. 184, 119–145 (1985).

    Article  CAS  PubMed  Google Scholar 

  5. Jaspars, E. M. J. in Molecular Plan: Virology (ed Davies, J. W.) 155–221 (CRC, Boca Raton, Florida, 1985).

    Google Scholar 

  6. Gough, G. R., Collier, K. J., Weith, H. L. & Gilham, P. T. Nucleic Acids Res. 7, 1955–1964 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gough, G. R., Nadeau, J. G., Gilham, P. T., Singleton, C. K. & Weith, H. L. Nucleic Acids Res. Symp. No. 7, 99–102 (1980).

    CAS  Google Scholar 

  8. Hayes, J. A., Brunden, M. J., Gilham, P. T. & Gough, G. R. Tetrahedron Lett. 26, 2407–2410 (1985).

    Article  CAS  Google Scholar 

  9. Nadeau, J. G. & Gilham, P. T. Nucleic Acids Res. 13, 8259–8274 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nelson, H. C. M., Finch, J. T., Luisi, B. F. & Klug, A. Nature 330, 221–226 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Coll, M., Frederick, C. A., Wang, A. H. J. & Rich, A. Proc. natn. Acad. Sci. U.S.A. 84, 8385–8389 (1987).

    Article  ADS  CAS  Google Scholar 

  12. Haran, T. E., Shakked, Z., Wang, A. H. J. & Rich, A. J. biomol. Struct. Dyn. 5, 199–217 (1987).

    Article  CAS  PubMed  Google Scholar 

  13. Heineman, U., Lauble, H., Frank, R. & Blöcker, H. Nucleic Acids Res. 22, 9531–9550 (1987).

    Article  Google Scholar 

  14. Jack, A., Ladner, J. E. & Klug, A. J. molec. Biol. 108, 619–649 (1976).

    Article  CAS  PubMed  Google Scholar 

  15. Wang, A. H. J. & Teng, M. K. J. Crystal Growth 90, 295–310 (1988).

    Article  ADS  CAS  Google Scholar 

  16. Wang, A. H. J. et al. Nature 299, 601–604 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Crick, F. H. C. & Klug, A. Nature 255, 530–533 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Fratini, A. V., Kopka, M. L., Drew, H. R. & Dickerson, R. E. J. biol. Chem. 257, 14686–14707 (1982).

    CAS  PubMed  Google Scholar 

  19. Wing, R. et al. Nature 287, 755–758 (1980).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Shakked, Z. et al. J. molec. Biol. 166, 183–201 (1983).

    Article  CAS  PubMed  Google Scholar 

  21. Frederick, C. A. et al. Nature 309, 327–331 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Klug, A. et al. J. molec. Biol. 131, 669–680 (1979).

    Article  CAS  PubMed  Google Scholar 

  23. Shakked, Z. & Rabinovich, D. Prog. Biophys. molec. Biol. 47, 159–195 (1986).

    Article  CAS  Google Scholar 

  24. Ohtsuka, E., Tanaka, S. & Ikehara, M. Nucleic Acids Res. 1, 1351–1357 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ohtsuka, E., Tanaka, S. & Ikehara, M. Chem. pharmac. Bull. 25, 949–959 (1977).

    Article  CAS  Google Scholar 

  26. Sung, W. L. & Narang, S. A. Can. J. Chem. 60, 111–120 (1982).

    Article  CAS  Google Scholar 

  27. Gough, G. R., Brunden, M. J. & Gilham, P. T. Tetrahedron Lett. 24, 5321–5324 (1983).

    Article  CAS  Google Scholar 

  28. Freier, S. M. et al. Proc. natn. Acad. Sci. U.S.A. 83, 9373–9377 (1986).

    Article  ADS  CAS  Google Scholar 

  29. Rabinovitch, D. & Shakked, Z. Acta crystallogr. A40, 195–200 (1984).

    Article  Google Scholar 

  30. Sussman, J. L. Meth. Enzym. 115, 271–303 (1985).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dock-Bregeon, A., Chevrier, B., Podjarny, A. et al. High resolution structure of the RNA duplex [U(U-A)6A]2. Nature 335, 375–378 (1988). https://doi.org/10.1038/335375a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/335375a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing