Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Function of torso in determining the terminal anlagen of the Drosophila embryo

Abstract

The formation of the unsegmented terminal regions of the Drosophila larva, acron and telson requires the function of at least five maternal genes (terminal genes class1). In their absence, the telson and acron are not formed. One of them, torso (tor)2, has gain-of-function alleles which have an opposite phenotype to the lack-of-function (tor) alleles: the segmented regions of the larval body, thorax and abdomen, are missing, whereas the acron is not affected and the telson is enlarged. In strong gain-of-function mutants, the pair-rule gene fushi tarazu3 (ftz) is not expressed, demonstrating the suppression of the segmentation process in an early stage of development. The tor gain-of-function effect is neutralized, and segmentation is restored in double mutants with the zygotic gene tailless4,5 (tll), which has a phenotype similar (but not identical) to that of tor. This suggests that tor acts through tll, and that in the gain-of-function alleles of tor, the tll gene product is ectopically expressed at middle positions of the embryo, where it inhibits the expression of segmentation genes like ftz.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nüsslein–Volhard, C., Frohnhöfer, H. G. & Lehmann, R. Science 238, 1675–1681 (1987).

    Article  ADS  Google Scholar 

  2. Schüpbach, T. & Wieschaus, E. Wilhelm Roux Arch. dev. Biol. 195, 302–317 (1986).

    Article  Google Scholar 

  3. Carroll, S. B. & Scott, M. P. Cell 43, 47–57 (1985).

    Article  CAS  Google Scholar 

  4. Strecker, T. R., Kongsuwan, K., Lengyel, J. A. & Merriam, J. R. Devl Biol. 113, 64–76 (1986).

    Article  CAS  Google Scholar 

  5. Strecker, T. R., Merriam, J. R. & Lengyel, J. A. Development 102, 721–734 (1988).

    CAS  PubMed  Google Scholar 

  6. Jürgens, G. Wilhelm Roux Arch. dev. Biol. 196, 141–157 (1986).

    Article  Google Scholar 

  7. Degelmann, A., Hardy, P. A., Perrimon, N. & Mahowald, A. P. Devl Biol. 115, 479–489 (1986).

    Article  CAS  Google Scholar 

  8. Perrimon, N., Mohler, D., Engstrom, L. & Mahowald, A. P. Genetics 113, 695–712 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Mlodzik, M., De Montrion, C. M., Hiromi, Y., Krause, H. M. & Gehring, W. J. Genes and Development 1, 603–614 (1987).

    Article  Google Scholar 

  10. Frasch, M., Hoey, T., Rushlow, C., Doyle, H. & Levine, M. EMBO J. 6, 749–759 (1987).

    Article  CAS  Google Scholar 

  11. Macdonald, P. M. & Struhl, G. Nature 324, 537–545 (1986).

    Article  ADS  CAS  Google Scholar 

  12. Edgar, B. A., Weir, M. P., Schubiger, G. & Kornberg, T. Cell 47, 747–754 (1986).

    Article  CAS  Google Scholar 

  13. Gaul, U., Seifert, E., Schuh, R. & Jäckle, H. Cell 50, 639–647 (1987).

    Article  CAS  Google Scholar 

  14. Gaul, U. & Jäckle, H. Cell 51, 549–555 (1987).

    Article  CAS  Google Scholar 

  15. Meinhardt, H. J. Cell Sci. 4, 357–381 (1986).

    Article  CAS  Google Scholar 

  16. Jäckle, H., Tautz, D., Schuh, R., Seifert, E. & Lehmann, R. Nature 324, 668–670 (1986).

    Article  ADS  Google Scholar 

  17. Anderson, K. V., Jürgens, G. & Nüsslein-Volhard, C. Cell 42, 779–789 (1985).

    Article  CAS  Google Scholar 

  18. Anderson, K. V., Bokla, L. & Nüsslein-Volhard, C. Cell 42, 791–798 (1985).

    Article  CAS  Google Scholar 

  19. Frohnhöfer, H. G., Lehmann, R. & Nüsslein-Volhard, C. J. Embryol. exp. Morph. 97, 169–179 (1986).

    PubMed  Google Scholar 

  20. Jürgens, G., Lehmann, R., Schardin, M. & Nüsslein-Volhard, C. Wilhelm Roux Arch. dev. Biol 195, 359–377 (1986).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klingler, M., Erdélyi, M., Szabad, J. et al. Function of torso in determining the terminal anlagen of the Drosophila embryo . Nature 335, 275–277 (1988). https://doi.org/10.1038/335275a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/335275a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing