Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cell lineage analysis reveals multipotency of some avian neural crest cells

Abstract

A major question in developmental biology is how precursor cells give rise to diverse sets of differentiated cell types. In most systems, it remains unclear whether the precursors can form many or all cell types (multipotent or totipotent), or only a single cell type (predetermined). The question of cell lineage is central to the neural crest because it gives rise to numerous and diverse derivatives including peripheral neurons, glial and Schwann cells, pigment cells, and cartilage. Although the sets of derivatives arising from different populations of neural crest cells have been well-documented1,2, relatively little is known about the developmental potentials of individual neural crest cells. We have iontophoretically microinjected the vital dye, lysinated rhodamine dextran (LRD)3 into individual dorsal neural tube cells to mark unambiguously their descendants. Many of the resulting labelled clones consisted of multiple cell types, as judged by both their location and morphology. Cells as diverse as sensory neurons, presumptive pigment cells, ganglionic supportive cells, adrenomedullary cells and neural tube cells were found within individual clones. Our results indicate that at least some neural crest cells are multipotent before their departure from the neural tube.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. LeDouarin, N. M. Devl Biol. 30, 217–222 (1973).

    CAS  Article  Google Scholar 

  2. LeDouarin, N. M. The Neural Crest (Cambridge, University Press, 1982).

    Google Scholar 

  3. Gimlich, R. L. & Braun, J. Devl Biol. 109, 509–514 (1986).

    Article  Google Scholar 

  4. Sieber-Blum, M. & Cohen, A. M. Devl Biol. 80, 96–106 (1980).

    CAS  Article  Google Scholar 

  5. Bronner-Fraser, M. E., Sieber-Blum, M. & Cohen, A. M. J. comp. Neurol. 193, 423–434 (1980).

    CAS  Article  Google Scholar 

  6. Barbu, M., Ziller, C., Rong, R. M. & LeDouarin, N. M. J. Neurosci. 6, 2215–2225 (1986).

    CAS  Article  Google Scholar 

  7. Girdlestone, J. & Weston, J. A. Devl Biol. 109, 274–287 (1985).

    CAS  Article  Google Scholar 

  8. Gimlich, R. L. & Cooke, J. Nature 306, 471–473 (1983).

    ADS  CAS  Article  Google Scholar 

  9. Shankland, M. Devl Biol. 123, 97–107 (1987).

    CAS  Article  Google Scholar 

  10. Cameron, R. A., Hough-Evans, B. R., Britten, R. J. & Davidson, E. H. Genes Dev. 1, 75–84 (1987).

    CAS  Article  Google Scholar 

  11. Sanes, J. R., Rubenstein, J. L. R. & Nicolas, J.-F. EMBO J. 5, 3133–3142 (1986).

    CAS  Article  Google Scholar 

  12. Turner, D. L. & Cepko, C. L. Nature 328, 131–136 (1987).

    ADS  CAS  Article  Google Scholar 

  13. Luskin, M. B., Pearlman, A. L. & Sanes, J. R. Soc. Neurosci. Abstr. 13, 183a (1987).

    Google Scholar 

  14. Glover, J. C., Gray, C. E. & Sanes, J. R. Soc. Neurosci. Abstr. 13, 183a (1987).

    Google Scholar 

  15. Wetts, R. & Fraser, S. E. Science 239, 1122–1145 (1988).

    ADS  Article  Google Scholar 

  16. Bronner-Fraser, M. Devl Biol. 115, 44–55 (1986).

    CAS  Article  Google Scholar 

  17. Tucker, G. C., Aoyama, H., Lipinski, M., Turz, T. & Thiery, J. P. Cell Differ. 14, 223–230 (1986).

    Article  Google Scholar 

  18. Lallier, T. & Bronner-Fraser, M. Devl Biol. 127, 99–112 (1988).

    CAS  Article  Google Scholar 

  19. Doupe, A. J., Landis, S. C. & Patterson P. H. J. Neurosci. 5, 2119–2142 (1985).

    CAS  Article  Google Scholar 

  20. Doupe, A. J., Patterson, P. H. & Landis, S. C. J. Neurosci. 5, 2143–2160 (1985).

    CAS  Article  Google Scholar 

  21. Anderson, D. J. & Axel, R. Cell 47, 1079–1090 (1986).

    CAS  Article  Google Scholar 

  22. Patterson, P. H. A. Rev. Neurosci. 1, 1–17 (1978).

    CAS  Article  Google Scholar 

  23. Patterson, P. H. & Chun, L. L. Y. Proc. natn. Acad. Sci. U.S.A. 71, 3607–3610 (1974).

    ADS  CAS  Article  Google Scholar 

  24. Landis, S. & Keefe, D. Devl Biol. 98, 349–372 (1983).

    CAS  Article  Google Scholar 

  25. Leblanc, G. & Landis, S. J. Neurosci. 6, 260–265 (1986).

    CAS  Article  Google Scholar 

  26. Coulombe, J. N. & Bronner-Fraser, M. Nature 324, 569–572 (1986).

    ADS  CAS  Article  Google Scholar 

  27. Fukada, K. & Patterson, P. Proc. natn. Acad. Sci. U.S.A. 82, 8795–8799 (1985).

    ADS  CAS  Article  Google Scholar 

  28. LeLievre C., Schweizer, G., Ziller, C. & LeDouarin, N. Devl Biol. 77, 362–378 (1980).

    CAS  Article  Google Scholar 

  29. LeDouarin, N. M. Science 231, 1515–1522 (1986).

    ADS  CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bronner-Fraser, M., Fraser, S. Cell lineage analysis reveals multipotency of some avian neural crest cells. Nature 335, 161–164 (1988). https://doi.org/10.1038/335161a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/335161a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing