Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quantum simulation of ferrocytochrome c

Abstract

The dramatic progress in the understanding of the dynamics of biomolecules has been largely fuelled by computer simulations based on the law of classical mechanics1. However in some respects biomolecules are at the borders of the domain of applicability of classical mechanics. The role of quantum mechanical effects in biomolecular structure and function is therefore worth investigating. Here we present preliminary results from a quantum simulation of a protein and contrast them with results from full classical simulations. The most significant differences are found in motions of high frequency, such as bond stretching or the torsional oscillation of groups that bear hydrogen atoms. The amplitudes of such motions are significantly increased by the penetration of atoms into classically forbidden regions. These differences will directly influence the rates of such processes as proton and electron transfer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. McCammon, J. A. & Harvey, S. C. Dynamics of Proteins and Nucleic Acids (Cambridge University Press, 1987).

    Book  Google Scholar 

  2. Frauenfelder, H. & Wolynes, P. G. Science 229, 337–345 (1985).

    Article  ADS  CAS  Google Scholar 

  3. Tunneling in Biological Systems (eds Chance, B., et al.) (Academic, New York, 1979).

  4. DeVault, D. Quantum-mechanical Tunnelling in Biological Systems 2nd edn (Cambridge University Press 1984).

    Google Scholar 

  5. Mayo, S. L., Ellis, W. R. Jr., Crutchley, R. J. & Gray, H. B. Science 233, 948–952 (1986).

    Article  ADS  CAS  Google Scholar 

  6. Kihara, T. & McCray, J. A. Biochim. biophys. Acta 292, 297–309 (1973).

    Article  CAS  Google Scholar 

  7. Albery, W. J. & Knowles, J. R. J. Am. chem. Soc. 99, 637–638 (1977).

    Article  CAS  Google Scholar 

  8. Goldanskii, V. I., Krupyanskii, Yu. F. & Flerov, V. N. Doklady Biophysics 272, 209–212 (1984).

    Google Scholar 

  9. Ringe, D. & Petsko, G. A. Prog. Biophys. molec. Biol. 45, 197–235 (1985).

    Article  CAS  Google Scholar 

  10. Parak, F., Frolov, E. N., Mössbauer, R. L. & Goldanskii, V. I. J. molec. Biol. 145, 825–833 (1981).

    Article  CAS  Google Scholar 

  11. Friedman, H. L. A Course in Statistical Mechanics (Prentice-Hall, Englewood Cliffs, 1985).

    Google Scholar 

  12. Feynman, R. P. Statistical Mechanics (Benjamin, London, 1972).

    Google Scholar 

  13. Chandler, D. & Wolynes, P. G. J. chem. Phys. 74, 4078–4095 (1981).

    Article  ADS  CAS  Google Scholar 

  14. Berne, B. J. & Thiriumalai, D. A. Rev. phys. Chem. 37, 401–424 (1986).

    Article  ADS  CAS  Google Scholar 

  15. van Gunsteren, W. F., Berendsen, H. J. C., Hermans, J., Hol, W. G. J. & Postma, J. P. M. Proc. natn. Acad. Sci. U.S.A. 80, 4315–4319 (1983).

    Article  ADS  CAS  Google Scholar 

  16. Takano, T. & Dickerson, R. E. J. molec. Biol. 153, 79–94 (1981).

    Article  CAS  Google Scholar 

  17. Northrup, S. H., Pear, M. R., Morgan, J. D., McCammon, J. A. & Karplus, M. J. molec. Biol. 153, 1087–1109 (1981).

    Article  CAS  Google Scholar 

  18. Moore, G. R. et al. Faraday Discuss. Chem. Soc. 74, 311–329 (1982).

    Article  CAS  Google Scholar 

  19. Wolynes, P. G. J. chem. Phys. 87, 6559–6561.(1987).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, C., Wong, C., McCammon, J. et al. Quantum simulation of ferrocytochrome c. Nature 334, 726–728 (1988). https://doi.org/10.1038/334726a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/334726a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing