Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Self-excited cosmic string dynamos


Cosmic strings, topological remnants of the earlier universe, arise in many grand unified theories. Witten1 showed that under some conditions these strings can behave like superconductors: current is carried by massless charge carriers, which can be either fermions or bosons, that move at the speed of light along the string. These strings are superconductors in the sense that any induced constant current (d.c.) will persist. The persistence is guaranteed by topological index theorems1, but no such theorem exists for alternating currents (a.c.), which can be damped by radiation or (as we report here) can even grow exponentially through dynamo self-interaction. This mechanism converts the mechanical energy of the string into electromagnetic fields.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Witten, E. Nucl. Phys. B249, 557–592 (1985).

    ADS  Article  Google Scholar 

  2. 2

    Spergel, D. N., Piran, T. & Goodman, J. J. Nucl. Phys. B291, 847–875 (1987).

    ADS  Article  Google Scholar 

  3. 3

    Aryal, M., Vilenkin, A. & Vachaspati, T. Phys. Lett. B194, 25–29 (1987).

    MathSciNet  CAS  Article  Google Scholar 

  4. 4

    Spergel, D. N., Press, W. H. & Scherrer, R. J. Phys. Rev. D. (submitted).

  5. 5

    Kibble, T. W. B. & Turok, N. Phys. Lett. B116, 141–143 (1982).

    Article  Google Scholar 

  6. 6

    Turok, N. Nucl. Phys. B242, 520–541 (1984).

    ADS  Article  Google Scholar 

  7. 7

    Chen, A. L., DiCarlo, D. A. & Hotes, S. A. Phys. Rev. D37, 863–868 (1988).

    ADS  MathSciNet  CAS  Google Scholar 

  8. 8

    Burden, C. J. Phys. Lett. B164, 277–281 (1985).

    Article  Google Scholar 

  9. 9

    Barr, S. N. & Matheson, A. M. Phys. Rev. D36, 2905–2914 (1987).

    ADS  CAS  Google Scholar 

  10. 10

    Hill, C. T. & Widrow, L. M. Phys. Lett. B189, 17–22 (1987).

    CAS  Article  Google Scholar 

  11. 11

    Ostriker, J. P., Thompson, C. & Witten, E. Phys. Lett. B180, 231–239 (1986).

    CAS  Article  Google Scholar 

  12. 12

    Vilenkin, A. & Field, G. B. Nature 326, 772–773 (1986).

    ADS  Article  Google Scholar 

  13. 13

    Babul, A., Paczynski, B., & Spergel, D. N. Astrophys. J. 316, L49–L54 (1987).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Hill, C. T., Schramm, D. N. & Walker, T. P. Phys. Rev. D36, 1007–1016 (1987).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Chudnofsky, E. M., Field, G. B., Spergel, D. N. & Vilenkin, A. Phys. Rev. D34, 944–950 (1986).

    ADS  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Spergel, D., Press, W. & Scherrer, R. Self-excited cosmic string dynamos. Nature 334, 682–683 (1988).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing