Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Yeast activators stimulate plant gene expression

Abstract

GAL4 is a transcriptional activator found in yeast1,2. Two distinct functions of the protein are required for its activity3–5: one directs sequen1ce-specific DNA binding, and another interacts with some other component of the transcriptional machinery, for example, RNA polymerase II or a TATA-binding protein. Two short regions of GAL4 function as 'activating sequences' when attached to the DNA-binding portion of GAL4 (ref. 6) and these regions can be replaced by a large number of peptides encoded by Escherichia coli genomic DNA fragments7 or by a synthetic peptide designed to form an amphiphilic α-helix8. All of these activating sequences, like that found in another yeast activator, GCN4 (refs 9, 10) bear an excess negative charge (also see ref. 11). GAL4 and its derivatives that are active in yeast stimulate transcription in mammalian cells when GAL4 binding sites are introduced upstream of a mammalian gene12,13; similarly, GAL4 activates transcription in Drosophila cells14. Here we show that GAL4 derivatives stimulate gene expression in plant cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Oshima, Y. in Molecular Biology of the Yeast Saccharomyces cerevisiae: Metabolism and Gene Expression (eds. Strathern, J. N., Jones, E. W. & Broach, J. R.) 159–180 (Cold Spring Harbor Laboratory, New York, 1982).

    Google Scholar 

  2. Johnston, M. Microbiol. Rev. 51, 458–476 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Brent, R. & Ptashne, M. Cell 43 729–736 (1985).

    Article  CAS  PubMed  Google Scholar 

  4. Keegan, L., Gill, G. & Ptashne, M. Science 231, 699–704 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Ptashne, M. Nature 322, 697–701 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Ma, J. & Ptashne, M. Cell 48, 847–853 (1987).

    Article  CAS  PubMed  Google Scholar 

  7. Ma, J. & Ptashne, M. Cell 51, 113–119 (1987).

    Article  CAS  PubMed  Google Scholar 

  8. Giniger, E. & Ptashne, M. Nature 330, 670–672 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Hope, I. & Struhl, K. Cell 46, 885–894 (1986).

    Article  CAS  PubMed  Google Scholar 

  10. Struhl, K. Cell 49, 294–297 (1987).

    Article  Google Scholar 

  11. Gill, G. & Ptashne, M. Cell 51, 121–126 (1987).

    Article  CAS  PubMed  Google Scholar 

  12. Kakidani, H. & Ptashne, M. Cell 52, 161–167 (1988).

    Article  CAS  PubMed  Google Scholar 

  13. Webster, N., Jin, J. R., Green, S., Hollis, M. & Chambon, P. Cell 52, 169–178 (1988).

    Article  CAS  PubMed  Google Scholar 

  14. Fisher, J., Giniger, E., Maniatis, T. & Ptashne, M. Nature 332, 853–856 (1988).

    Article  ADS  Google Scholar 

  15. Bevan, M., Barnes, W. M. & Chilton, M. D. Nucleic Acids Res. 11, 369–385 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Alton, N. K. & Vapnek, D. Nature 282, 864–869 (1979).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Odell, J. T., Nagy, F. & Chua, N.-H. Nature 313, 810–812 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Giniger, E., Varnum, S. & Ptashne, M. Cell 40, 767–774 (1985).

    Article  CAS  PubMed  Google Scholar 

  19. Jefferson, R. A., Burgess, S. M. & Hirsch, D. Proc. natn. Acad. Sci. U.S.A. 83, 8447–8451 (1986).

    Article  ADS  CAS  Google Scholar 

  20. Jefferson, R. A. Pl. molec. Biol. Reporter 5, 387–405 (1987).

    Article  CAS  Google Scholar 

  21. Nagy, J. I. & Maliga, P. Z. Pflanzenphysiol. 78, 435–455 (1976).

    Article  Google Scholar 

  22. Fromm, M., Taylor, L. P. & Walbot, V. Proc. natn. Acad. Sci. U.S.A. 82, 5824–5828 (1985).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, J., Przibilla, E., Hu, J. et al. Yeast activators stimulate plant gene expression. Nature 334, 631–633 (1988). https://doi.org/10.1038/334631a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/334631a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing