Abstract
The discovery of hydrothermal vents at oceanic ridge crests and the appreciation of their importance in the element balance of the oceans is one of the main recent advances in marine geochemistry1. It is likely that vents were present in the oceans of the primitive Earth because the process of hydrothermal circulation probably began early in the Earth's history2. Here we examine the popular hypothesis3–7 that life arose in these vents. This proposal, however, is based on a number of misunderstandings concerning the organic chemistry involved. An example is the suggestion that organic compounds were destroyed on the surface of the early Earth by the impact of asteroids and comets, but at the same time assuming that organic syntheses can occur in hydrothermal vents7. The high temperatures in the vents would not allow synthesis of organic compounds, but would decompose them, unless the exposure time at vent temperatures was short8–11. Even if the essential organic molecules were available in the hot hydrothermal waters, the subsequent steps of polymerization and the conversion of these polymers into the first organisms would not occur as the vent waters were quenched to the colder temperatures of the primitive oceans.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Alkanes increase the stability of early life membrane models under extreme pressure and temperature conditions
Communications Chemistry Open Access 26 February 2021
-
Genomic analysis of Caldalkalibacillus thermarum TA2.A1 reveals aerobic alkaliphilic metabolism and evolutionary hallmarks linking alkaliphilic bacteria and plant life
Extremophiles Open Access 08 October 2020
-
RETRACTED ARTICLE: The quantum physiology of oxygen; from electrons to the evolution of redox signaling in the human brain
Bioelectronic Medicine Open Access 17 October 2018
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout
References
Edmond, J. M. et al. Nature 297, 187–191 (1982).
Sleep, N. H. Origins of Life 16, 179–180 (1986).
Corliss, J. B., Baross, J. A. & Hoffman, S. E. Oceanologica Acta 4 suppl. 59–69 (1981).
Baross, J. A. & Hoffman, S. E. Origins of Life 15, 327–345 (1985).
Nisbet, E. G. The Young Earth (Allen & Unwin, Winchester, Massachusetts, 1987).
Knoll, A. H. Science 239, 199–200 (1988).
Maher, K. A. & Stevenson, D. J. Nature 331, 612–614 (1988).
Miller, S. L. & Orgel, L. E. The Origins of Life on the Earth 118–128 (Prentice-Hall, Englewood Cliffs, 1974).
White, R. H. Nature 310, 430–432 (1984).
Miller, S. L., Urey, H. C. & Oro, J. J. molec. Evol. 9, 59–72 (1976).
Bernhardt, G., Lüdermann, H.-D., Jaenicke, R., König, H. & Stetter, K. O. Naturwissenschaften 71, 583–586 (1984).
Turekian, K. K. & Cochran, J. K. Proc. natn. Acad. Sci. U.S.A. 83, 6241–6244 (1986).
Macdonald, K. C., Becker, K., Spiess, F. N. & Ballard, R. D. Earth planet. Sci. Lett. 48, 1–7 (1980).
Harada, K. & Fox, S. W. Nature 201, 335–336 (1964).
Lawless, J. G. & Boynton, C. G. Nature 243, 405–407 (1973).
Storch, H. H., Golumbic, N. & Anderson, R. B. The Fischer-Tropsch and Related Syntheses (Wiley, New York, 1951).
Hayatsu, R. & Anders, E. Top. curr. Chem. 99, 1–37 (1981).
Vallentyne, J. R. Geochim. cosmochim. Acta 32, 1853–1856 (1968).
Bada, J. L., Shou, M.-Y., Man, E. H. & Schroeder, R. A. Earth planet. Sci. Lett. 41, 67–76 (1978).
Feather, M. S. & Harris, J. F. Adv. Carbohyd. Chem. Biochem. 28, 161–224 (1973).
Mopper, K., Dawson, R., Leibezeit, G. & Ittekkot, V. Mar. Chem. 10, 55–66 (1980).
Stribling, R. & Miller, S. L. Origins of Life 17, 261–273 (1988).
Bada, J. L. & Miller, S. L. BioSystems 20, 21–26 (1987).
Simoneit, B. R. T. Can. J. Earth. Sci. 22, 1919–1929 (1985).
Meggy, A. B. J. chem. Soc. 1956, 1444–1454 (1956).
Fox, S. & Dose, K. Molecular Evolution and the Origin of Life (Freeman, San Francisco, 1972).
Fuller, W. D., Sanchez, R. A. & Orgel, L. E. J. molec. Evol. 1, 249–257 (1972).
Cech, T. R. & Bass, B. L. A. Rev. Biochem. 55, 599–629 (1986).
Cech, T. R. Proc. natn. Acad. Sci. U.S.A. 83, 4360–4363 (1986).
Westheimer, F. H. Nature 319, 534–536 (1986).
Joyce, G. F., Schwartz, A. W., Miller, S. L. & Orgel, L. E. Proc. natn. Acad. Sci. U.S.A. 84, 4398–4402 (1987).
Ginoza, W., Hoelle, C. J., Vessey, K. B. & Carmack, C. Nature 203, 606–609 (1964).
Baross, J. A. & Deming, J. W. Nature 303, 423–426 (1983).
Trent, J. D., Chastain, R. A. & Yayanos, A. A. Nature 307, 737–740 (1984).
Yayanos, A. A., Van Boxtel, R. & Dietz, A. Appl. envir. Microbiol. 46, 1357–1363 (1983).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Miller, S., Bada, J. Submarine hot springs and the origin of life. Nature 334, 609–611 (1988). https://doi.org/10.1038/334609a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/334609a0
This article is cited by
-
Indus and Nubra Valley hot springs affirm the geomicrobiological specialties of Trans-Himalayan hydrothermal systems
Journal of Earth System Science (2022)
-
Alkanes increase the stability of early life membrane models under extreme pressure and temperature conditions
Communications Chemistry (2021)
-
Archaean seafloors shallowed with age due to radiogenic heating in the mantle
Nature Geoscience (2021)
-
Factors in Protobiomonomer Selection for the Origin of the Standard Genetic Code
Acta Biotheoretica (2021)
-
Genomic analysis of Caldalkalibacillus thermarum TA2.A1 reveals aerobic alkaliphilic metabolism and evolutionary hallmarks linking alkaliphilic bacteria and plant life
Extremophiles (2020)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.