Abstract
The elongation factors EF-Tu and EF-G interact with ribosomes during protein synthesis1,2: EF-Tu presents incoming aminoacyl transfer RNA to the programmed ribosome as an EF-Tu-GTP-tRNA ternary complex and EF-G promotes translocation of peptidyl-tRNA and its associated messenger RNA from the A to the P site after peptidyl transfer. Both events are accompanied by ribosome-dependent GTP hydrolysis. Here we use chemical probes to investigate the possible interaction of these factors with ribosomal RNA in E. coli ribosomes. We observe EF-G-dependent footprints in vitro and in vivo around position 1,067 in domain II of 23S rRNA, and in the loop around position 2,660 in domain VI. EF-Tu gives an overlapping footprint in vitro at positions 2,655 and 2,661, but shows no effect at position 1,067. The 1,067 region is the site of interaction of the antibiotic thiostrepton2, which prevents formation of the EF-G–GTP–ribosome complex and is a site for interaction with the GTPase-related protein L11 (ref. 3). The universally conserved loop in the 2,660 region4 is the site of attack by the RNA-directed cytotoxins α-sarcin5 and ricin6, whose effects abolish translation and include the loss of elongation factor-dependent functions7 in eukaryotic ribosomes.
Your institute does not have access to this article
Access options
Subscribe to Journal
Get full journal access for 1 year
$199.00
only $3.90 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.
References
Kaziro, Y. Biochim. biophys. Acta 505, 95–127 (1978).
Lucas-Lenard, J. & Lipmann, F. A. Rev. Biochem. 40, 409–448 (1971).
Schmidt, F. J., Thompson, J., Lee, K., Dijk, J. & Cundliffe, E. J. biol Chem. 266, 12301–12305 (1981).
Noller, H. F. A. Rev. Biochem. 53, 119–162 (1984).
Endo, Y. & Wool, I. G. J. biol. Chem. 257, 9054–9060 (1982).
Endo, Y., Mitsui, K., Motizuki, M. & Tsurugi, K. J. biol. Chem. 262, 5908–5912 (1987).
Fernandez-Puentes, C. & Vazquez, D. FEBS Lett 78, 143–146 (1977).
Bodley, J. W., Zieve, F. J. & Lin, L. J. biol. Chem. 45, 5662–5667 (1970).
Hershey, J. W. B. & Monro, R. E. J. molec. Biol. 18, 68–76 (1966).
Eckstein, F., Kettler, M. & Parmeggiani, A. Biochem. biophys. Res. Commun. 45, 1151–1158 (1971).
Moazed, D., Stern, S. & Noller, H. F. J. Molec. Biol. 187, 399–416 (1986).
Wolf, H., Chinali, G. & Parmeggiani, A. Proc. natn. Acad. Sci. U.S.A. 71, 4910–4914 (1974).
Yokosawa, H., Inoue-Yokosawa, N., Arai, K., Kawakita, M. & Kaziro, Y. J. biol. Chem. 248, 375–377 (1973).
Bodley, J. W., Lin, L. & Highland, J. H. Biochim. biophys. Acta 91, 1406–1411 (1970).
Sköld, S. Nucleic Acids Res. 11, 4923–4932 (1983).
Maassen, J. A. & Möller, W. J. biol Chem. 253, 2777–2783 (1978).
Möller, W. in Ribosomes (eds Nomura, M., Tissières, A. & Lengyel, P.) 711–731 (Cold Spring Harbor Laboratory, New York, 1974).
Richman, N. & Bodley, J. W. Proc. natn. Acad. Sci. U.S.A. 69, 688–689 (1972).
Cabrer, B., Vazquez, D. & Modolell, J. Proc. natn. Acad. Sci. U.S.A. 69, 733–736 (1972).
Miller, D. Proc. natn. Acad. Sci. U.S.A. 69, 752–755 (1972).
Richter, D. Biochim. biophys. Acta 46, 1850–1856 (1972).
Beauclerk, A. A., Cundliffe, E. & Dijk, J. J. biol. Chem. 259, 6559–6563 (1984).
Moazed, D., Van Stolk, J., Douthwaite, S. & Noller, H. F. J. molec. Biol. 191, 483–493 (1986).
Robertson, J. M., Urbanke, C., Chinali, G., Wintermeyer, W. & Parmeggiani, A. J. molec. Biol. 189, 653–662 (1986).
Stern, S., Moazed, D. & Noller, H. F. Meth. Enzym. (in the press).
Nirenberg, M. & Leder, P. Science 145, 1399–1407 (1964).
Moldave, K. A. Rev. Biochem. 54, 1109–1150 (1985).
Lake, J. A. A. Rev. Biochem. 54, 507–530 (1985).
Louie, A., Ribeiro, N. S., Reid, B. R. & Jurnak, F. J. biol. Chem. 259, 5010–5016 (1984).
Robertson, J. M. & Wintermeyer, W. J. molec. Biol. 151, 57–79 (1981).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Moazed, D., Robertson, J. & Noller, H. Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA. Nature 334, 362–364 (1988). https://doi.org/10.1038/334362a0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/334362a0
Further reading
-
Cryo-EM of elongating ribosome with EF-Tu•GTP elucidates tRNA proofreading
Nature (2020)
-
High-throughput determination of RNA structures
Nature Reviews Genetics (2018)
-
Ensemble cryo-EM elucidates the mechanism of translation fidelity
Nature (2017)
-
The pathway to GTPase activation of elongation factor SelB on the ribosome
Nature (2016)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.