Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA


The elongation factors EF-Tu and EF-G interact with ribosomes during protein synthesis1,2: EF-Tu presents incoming aminoacyl transfer RNA to the programmed ribosome as an EF-Tu-GTP-tRNA ternary complex and EF-G promotes translocation of peptidyl-tRNA and its associated messenger RNA from the A to the P site after peptidyl transfer. Both events are accompanied by ribosome-dependent GTP hydrolysis. Here we use chemical probes to investigate the possible interaction of these factors with ribosomal RNA in E. coli ribosomes. We observe EF-G-dependent footprints in vitro and in vivo around position 1,067 in domain II of 23S rRNA, and in the loop around position 2,660 in domain VI. EF-Tu gives an overlapping footprint in vitro at positions 2,655 and 2,661, but shows no effect at position 1,067. The 1,067 region is the site of interaction of the antibiotic thiostrepton2, which prevents formation of the EF-G–GTP–ribosome complex and is a site for interaction with the GTPase-related protein L11 (ref. 3). The universally conserved loop in the 2,660 region4 is the site of attack by the RNA-directed cytotoxins α-sarcin5 and ricin6, whose effects abolish translation and include the loss of elongation factor-dependent functions7 in eukaryotic ribosomes.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. Kaziro, Y. Biochim. biophys. Acta 505, 95–127 (1978).

    CAS  Article  PubMed  Google Scholar 

  2. Lucas-Lenard, J. & Lipmann, F. A. Rev. Biochem. 40, 409–448 (1971).

    CAS  Article  Google Scholar 

  3. Schmidt, F. J., Thompson, J., Lee, K., Dijk, J. & Cundliffe, E. J. biol Chem. 266, 12301–12305 (1981).

    Google Scholar 

  4. Noller, H. F. A. Rev. Biochem. 53, 119–162 (1984).

    CAS  Article  Google Scholar 

  5. Endo, Y. & Wool, I. G. J. biol. Chem. 257, 9054–9060 (1982).

    CAS  PubMed  Google Scholar 

  6. Endo, Y., Mitsui, K., Motizuki, M. & Tsurugi, K. J. biol. Chem. 262, 5908–5912 (1987).

    CAS  PubMed  Google Scholar 

  7. Fernandez-Puentes, C. & Vazquez, D. FEBS Lett 78, 143–146 (1977).

    CAS  Article  PubMed  Google Scholar 

  8. Bodley, J. W., Zieve, F. J. & Lin, L. J. biol. Chem. 45, 5662–5667 (1970).

    Google Scholar 

  9. Hershey, J. W. B. & Monro, R. E. J. molec. Biol. 18, 68–76 (1966).

    CAS  Article  PubMed  Google Scholar 

  10. Eckstein, F., Kettler, M. & Parmeggiani, A. Biochem. biophys. Res. Commun. 45, 1151–1158 (1971).

    CAS  Article  PubMed  Google Scholar 

  11. Moazed, D., Stern, S. & Noller, H. F. J. Molec. Biol. 187, 399–416 (1986).

    CAS  Article  PubMed  Google Scholar 

  12. Wolf, H., Chinali, G. & Parmeggiani, A. Proc. natn. Acad. Sci. U.S.A. 71, 4910–4914 (1974).

    ADS  CAS  Article  Google Scholar 

  13. Yokosawa, H., Inoue-Yokosawa, N., Arai, K., Kawakita, M. & Kaziro, Y. J. biol. Chem. 248, 375–377 (1973).

    CAS  PubMed  Google Scholar 

  14. Bodley, J. W., Lin, L. & Highland, J. H. Biochim. biophys. Acta 91, 1406–1411 (1970).

    Google Scholar 

  15. Sköld, S. Nucleic Acids Res. 11, 4923–4932 (1983).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Maassen, J. A. & Möller, W. J. biol Chem. 253, 2777–2783 (1978).

    CAS  PubMed  Google Scholar 

  17. Möller, W. in Ribosomes (eds Nomura, M., Tissières, A. & Lengyel, P.) 711–731 (Cold Spring Harbor Laboratory, New York, 1974).

    Google Scholar 

  18. Richman, N. & Bodley, J. W. Proc. natn. Acad. Sci. U.S.A. 69, 688–689 (1972).

    ADS  Article  Google Scholar 

  19. Cabrer, B., Vazquez, D. & Modolell, J. Proc. natn. Acad. Sci. U.S.A. 69, 733–736 (1972).

    ADS  CAS  Article  Google Scholar 

  20. Miller, D. Proc. natn. Acad. Sci. U.S.A. 69, 752–755 (1972).

    ADS  CAS  Article  Google Scholar 

  21. Richter, D. Biochim. biophys. Acta 46, 1850–1856 (1972).

    CAS  Google Scholar 

  22. Beauclerk, A. A., Cundliffe, E. & Dijk, J. J. biol. Chem. 259, 6559–6563 (1984).

    CAS  PubMed  Google Scholar 

  23. Moazed, D., Van Stolk, J., Douthwaite, S. & Noller, H. F. J. molec. Biol. 191, 483–493 (1986).

    CAS  Article  PubMed  Google Scholar 

  24. Robertson, J. M., Urbanke, C., Chinali, G., Wintermeyer, W. & Parmeggiani, A. J. molec. Biol. 189, 653–662 (1986).

    CAS  Article  PubMed  Google Scholar 

  25. Stern, S., Moazed, D. & Noller, H. F. Meth. Enzym. (in the press).

  26. Nirenberg, M. & Leder, P. Science 145, 1399–1407 (1964).

    ADS  CAS  Article  PubMed  Google Scholar 

  27. Moldave, K. A. Rev. Biochem. 54, 1109–1150 (1985).

    CAS  Article  Google Scholar 

  28. Lake, J. A. A. Rev. Biochem. 54, 507–530 (1985).

    CAS  Article  Google Scholar 

  29. Louie, A., Ribeiro, N. S., Reid, B. R. & Jurnak, F. J. biol. Chem. 259, 5010–5016 (1984).

    CAS  PubMed  Google Scholar 

  30. Robertson, J. M. & Wintermeyer, W. J. molec. Biol. 151, 57–79 (1981).

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Moazed, D., Robertson, J. & Noller, H. Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA. Nature 334, 362–364 (1988).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing