Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Low retinal noise in animals with low body temperature allows high visual sensitivity

Abstract

The weakest pulse of light a human can detect sends about 100 photons through the pupil and produces 10–20 rhodopsin isomerizations in a small retinal area1,2. It has been postulated3 that we cannot see single photons because of a retinal noise arising from randomly occurring thermal isomerizations. Direct recordings have since demonstrated the existence of electrical 'dark' rod events indistinguishable from photoisomerization signals4–6. Their mean rate of occurrence is roughly consistent with the 'dark light' in psychophysical threshold experiments, and their thermal parameters justify an identification with thermal isomerizations5. In the retina of amphibians, a small proportion of sensitive ganglion cells have a performance-limiting noise that is low enough to be well accounted for by these events7–10. Here we study the performance of dark-adapted toads and frogs and show that the performance limit of visually guided behaviour is also set by thermal isomerizations. As visual sensitivity limited by thermal events should rise when the temperature falls, poikilothermous vertebrates living at low temperatures should then reach light sensitivities unattainable by mammals and birds with optical factors equal. Comparison of different species at different temperatures shows a correlation between absolute threshold intensities and estimated thermal isomerization rates in the retina.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hecht, S., Shlaer, S. & Pirenne, M. H. J. gen. Physiol. 25, 819–840 (1942).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Barlow, H. B. in Vertebrate Photoreception 337–358 (Academic, London, 1977).

    Google Scholar 

  3. Barlow, H. B. J. opt. Soc. Am. 46, 634–639 (1956).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Ashmore, J. F. & Falk, G. Nature 270, 69–71 (1977).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Baylor, D. A., Matthews, G. & Yau, K.-W. J. Physiol. 309, 591–621 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Baylor, D. A., Nunn, B. J. & Schnapf, J. F. J. Physiol. 357, 575–607 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Reuter, T., Donner, K. & Copenhagen, D. R. Neurosci. Res. suppl. 4, 163–180 (1986).

    Article  Google Scholar 

  8. Copenhagen, D. R., Donner, K. & Reuter, T. J. Physiol. 393, 667–680 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Aho, A.-C. et al. J. opt. Soc. Am. A 4, 2321–2329 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Donner, K. Physica Scripta (in the press).

  11. Larsen, L. O. & Pedersen, J. N. Amphibia-Reptilia 2, 321–327 (1982).

    Google Scholar 

  12. Barlow, H. B. in Photophysiology Vol. 2, 163–202 (Academic, New York, 1964).

    Book  Google Scholar 

  13. Rose, A. J. opt. Soc. Am. 38, 196–208 (1948).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Maximov, V. V., Orlov, O. Yu & Reuter, T. Vision Res. 25, 1037–1049 (1985).

    Article  CAS  PubMed  Google Scholar 

  15. Burghagen, H. & Ewert, J.-P. J. comp. Physiol. A 152, 241–249 (1983).

    Article  Google Scholar 

  16. Du Pont, J. S. & de Groot, P. J. Vision Res. 16, 803–810 (1974).

    Article  Google Scholar 

  17. Barlow, H. B. J. Physiol. 141, 337–350 (1958).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Donner, K., Hemilä, S. & Koskelainen, A. Acta physiol. scand. (in the press).

  19. Østerberg, G. Acta Ophthal suppl. 6, 1–103 (1935).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aho, AC., Donner, K., Hydén, C. et al. Low retinal noise in animals with low body temperature allows high visual sensitivity. Nature 334, 348–350 (1988). https://doi.org/10.1038/334348a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/334348a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing