Low retinal noise in animals with low body temperature allows high visual sensitivity

Abstract

The weakest pulse of light a human can detect sends about 100 photons through the pupil and produces 10–20 rhodopsin isomerizations in a small retinal area1,2. It has been postulated3 that we cannot see single photons because of a retinal noise arising from randomly occurring thermal isomerizations. Direct recordings have since demonstrated the existence of electrical 'dark' rod events indistinguishable from photoisomerization signals4–6. Their mean rate of occurrence is roughly consistent with the 'dark light' in psychophysical threshold experiments, and their thermal parameters justify an identification with thermal isomerizations5. In the retina of amphibians, a small proportion of sensitive ganglion cells have a performance-limiting noise that is low enough to be well accounted for by these events7–10. Here we study the performance of dark-adapted toads and frogs and show that the performance limit of visually guided behaviour is also set by thermal isomerizations. As visual sensitivity limited by thermal events should rise when the temperature falls, poikilothermous vertebrates living at low temperatures should then reach light sensitivities unattainable by mammals and birds with optical factors equal. Comparison of different species at different temperatures shows a correlation between absolute threshold intensities and estimated thermal isomerization rates in the retina.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Hecht, S., Shlaer, S. & Pirenne, M. H. J. gen. Physiol. 25, 819–840 (1942).

  2. 2

    Barlow, H. B. in Vertebrate Photoreception 337–358 (Academic, London, 1977).

  3. 3

    Barlow, H. B. J. opt. Soc. Am. 46, 634–639 (1956).

  4. 4

    Ashmore, J. F. & Falk, G. Nature 270, 69–71 (1977).

  5. 5

    Baylor, D. A., Matthews, G. & Yau, K.-W. J. Physiol. 309, 591–621 (1980).

  6. 6

    Baylor, D. A., Nunn, B. J. & Schnapf, J. F. J. Physiol. 357, 575–607 (1984).

  7. 7

    Reuter, T., Donner, K. & Copenhagen, D. R. Neurosci. Res. suppl. 4, 163–180 (1986).

  8. 8

    Copenhagen, D. R., Donner, K. & Reuter, T. J. Physiol. 393, 667–680 (1987).

  9. 9

    Aho, A.-C. et al. J. opt. Soc. Am. A 4, 2321–2329 (1987).

  10. 10

    Donner, K. Physica Scripta (in the press).

  11. 11

    Larsen, L. O. & Pedersen, J. N. Amphibia-Reptilia 2, 321–327 (1982).

  12. 12

    Barlow, H. B. in Photophysiology Vol. 2, 163–202 (Academic, New York, 1964).

  13. 13

    Rose, A. J. opt. Soc. Am. 38, 196–208 (1948).

  14. 14

    Maximov, V. V., Orlov, O. Yu & Reuter, T. Vision Res. 25, 1037–1049 (1985).

  15. 15

    Burghagen, H. & Ewert, J.-P. J. comp. Physiol. A 152, 241–249 (1983).

  16. 16

    Du Pont, J. S. & de Groot, P. J. Vision Res. 16, 803–810 (1974).

  17. 17

    Barlow, H. B. J. Physiol. 141, 337–350 (1958).

  18. 18

    Donner, K., Hemilä, S. & Koskelainen, A. Acta physiol. scand. (in the press).

  19. 19

    Østerberg, G. Acta Ophthal suppl. 6, 1–103 (1935).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aho, A., Donner, K., Hydén, C. et al. Low retinal noise in animals with low body temperature allows high visual sensitivity. Nature 334, 348–350 (1988). https://doi.org/10.1038/334348a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.