Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phase transitions of stored laser-cooled ions

Abstract

Single ions in miniature traps can be imaged by using laser light to stimulate fluorescence radiation. At the same time, radiation pressure can be used to bring them nearly to rest. When a small number of ions are trapped, phase transitions can be observed between a chaotic cloud and an ordered crystalline structure, depending on the degree of laser cooling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Föppl, L. J. reine angew. Math. 141, 251–302 (1912).

    MathSciNet  Google Scholar 

  2. Debye, P. & Hückel, E. Phys. Zeitschr. 24, 185–206 (1923).

    CAS  Google Scholar 

  3. Wigner, E. P. Trans. Faraday Soc. 34, 678–685 (1938).

    CAS  Google Scholar 

  4. Paul, W., Osberghaus, O. & Fischer, E. Ein Ionenkäfig Forschungsberichte des Wirtschafts-und Verkehrsministeriums Nordrhein-Westfalen 415 (1958).

  5. Fischer, E. Z. Phys. 156, 1–26 (1959).

    ADS  Google Scholar 

  6. Wuerker, R. F., Shelton, H. & Langmuir, R. V. J. appl. Phys. 30, 342–349 (1959).

    ADS  Google Scholar 

  7. Bollinger, J. J. & Wineland, D. J. Phys. Rev. Lett. 53, 348–351 (1984).

    ADS  CAS  Google Scholar 

  8. Brewer, L. R., Prestage, J. D., Bollinger, J. J. & Wineland, D. J. in Strongly Coupled Plasma Physics (ed. Rogers, F. J. & DeWitt, H. E.) 53–64 (Plenum, New York, 1987).

    Google Scholar 

  9. Dehmelt, H. G. in Adv. atom. molec. Phys. Vol. 3, 53–72 (ed. Bates, D. R. & Estermann, I.) (Academic, New York, 1967).

    Google Scholar 

  10. Penning, F. M. Physica 3, 873 (1936).

    ADS  Google Scholar 

  11. Wineland, D. J. & Itano, W. M. Phys. Rev. A20, 1521–1540 (1979).

    ADS  Google Scholar 

  12. Javanainen, J. J. appl. Phys. 23, 175–182 (1980).

    ADS  CAS  Google Scholar 

  13. Stenholm, S. Rev. mod. Phys. 58, 699–739 (1986).

    ADS  CAS  Google Scholar 

  14. Pollock, E. L. & Hansen, J. P. Phys. Rev. A8, 3110–3122 (1973).

    ADS  Google Scholar 

  15. Slattery, W. L., Doolen, G. D. & DeWitt, H. E. Phys. Rev. A21, 2087–2095 (1980).

    ADS  Google Scholar 

  16. Diedrich, F., Krause, J., Rempe, G., Scully, M. O. & Walther, H. in Laser Spectroscopy VIII (Springer Series in Optical Sciences 55, 133–138) (ed. Svanberg, S. & Person, W.) (Springer, Berlin, 1987).

    Google Scholar 

  17. Diedrich, F., Krause, J., Rempe, G., Scully, M. O. & Walther, H. in Proc. Fourth Int. Conf. on Multiphoton Processes, Boulder, Colorado, 1987 (ed. Smith, S. & Knight, P.) (Cambridge University Press, New York, in the press).

  18. Diedrich, F., Peik, E., Chen, J. M., Quint, W. & Walther, H. Phys. Rev. Lett. 59, 2931–2934 (1987).

    ADS  CAS  PubMed  Google Scholar 

  19. Diedrich, F., Peik, E., Chen, J. M., Quint, W. & Walther, H. Phys. Bl. 44, 12–15 (1988).

    CAS  Google Scholar 

  20. Wineland, D. J., Bergquist, J. C., Itano, W. M., Bollinger, J. J. & Manney, C. H. Phys. Rev. Lett. 59, 2935–2938 (1987).

    ADS  CAS  PubMed  Google Scholar 

  21. Malmberg, J. H. & O'Neil, T. M. Phys. Rev. Lett. 39, 1333–1336 (1977).

    ADS  Google Scholar 

  22. Grimes, C. C. & Adams, G. Phys. Rev. Lett. 42, 795–798 (1979).

    ADS  CAS  Google Scholar 

  23. Deville, G., Valdes, A., Andrei, E. & Williams, F. B. I. Phys. Rev. Lett. 53, 588–591 (1984).

    ADS  Google Scholar 

  24. Gerhardts, R. Phys. Bl. 42, 23–25 (1986).

    CAS  Google Scholar 

  25. Mostowski, J. & Gajda, M. Acta phys. polonica A67, 783–802 (1985).

    CAS  Google Scholar 

  26. Baklanov, E. V. & Chebotayev, V. P. Appl. Phys. B39, 179–181 (1986).

    ADS  CAS  Google Scholar 

  27. Casdorff, R. & Blatt, R. Appl. Phys. B45, 175–182 (1988).

    ADS  CAS  Google Scholar 

  28. Javanainen, J. Phys. Rev. Lett. 56, 1798–1801 (1986).

    ADS  CAS  PubMed  Google Scholar 

  29. Javanainen, J. J. opt. Soc. Am. B5, 73–81 (1988).

    ADS  Google Scholar 

  30. Ichimaru, S. Rev. mod. Phys. 54, 1017–1059 (1982).

    ADS  CAS  Google Scholar 

  31. Totsuji, H. in Strongly Coupled Plasma Physics (ed. Rogers, F. J. & DeWitt, H. E.) (Plenum, New York, 1987).

    Google Scholar 

  32. Habs, D. in Frontiers of Particle Beams (Springer, New York, 1988).

    Google Scholar 

  33. Rahman, A. & Schiffer, J. P. Phys. Rev. Lett. 57, 1133–1136 (1986).

    ADS  CAS  PubMed  Google Scholar 

  34. Schiffer, J. P. & Poulsen, O. Europhys. Lett. 1, 55–59 (1986).

    ADS  CAS  Google Scholar 

  35. Neuhauser, W., Hohenstatt, M., Toschek, P., Dehmelt, H. Phys. Rev. Lett. 41, 233–236 (1978).

    ADS  CAS  Google Scholar 

  36. Neuhauser, W., Hohenstatt, M., Toschek, P., Dehmelt, H. Phys. Rev. A22, 1137–1140 (1980).

    ADS  Google Scholar 

  37. Dehmelt, H. G. in Advances in Laser Spectroscopy (ed. Arecchi, F. T, Strumia, F. & Walther, H.) 153–187 (Plenum, New York, 1983).

    Google Scholar 

  38. Wineland, D. J., Itano, W. M. & Van Dyck, R. S. in Adv. atom, molec. Phys. 19 (ed. Bates, D. R. & Bederson, B.) 135–186 (Academic, New York, 1983).

    Google Scholar 

  39. Wineland, D. J. & Itano, W. M. Phys. Lett. 82A, 75–78 (1981).

    ADS  CAS  Google Scholar 

  40. Nagourney, W., Janik, G. & Dehmelt, H. G. Proc. natn. Acad. Sci. U.S.A. 80, 643–646 (1983).

    ADS  CAS  Google Scholar 

  41. Janik, G., Nagourney, W. & Dehmelt, H. G. J. opt. Soc. Am. B2, 1251–1257 (1985).

    ADS  Google Scholar 

  42. Bergquist, J. C., Itano, W. M. & Wineland, D. J. Phys. Rev. A36, 428–430 (1987).

    ADS  Google Scholar 

  43. Dehmelt, H. G. IEEE Trans. Instrumn. Meast IM-31, 83–87 (1982).

    ADS  CAS  Google Scholar 

  44. Wineland, D. J., Itano, W. M., Bergquist, J. C., Bollinger, J. J. & Hemmati, H. Prog. Quant. Electr. 8, 139–142 (1984).

    ADS  CAS  Google Scholar 

  45. Paul, W. & Raether, M. Z. Phys. 140, 262–273 (1955).

    ADS  Google Scholar 

  46. Diedrich, F. & Walther, H. Phys. Rev. Lett. 58, 203–206 (1987).

    ADS  CAS  PubMed  Google Scholar 

  47. Whittaker, E. T. & Watson, G. N. A Course of Modern Analysis (Cambridge University Press, 1927).

    MATH  Google Scholar 

  48. Loudon, R. The Quantum Theory of Light (Clarendon, Oxford, 1986).

    MATH  Google Scholar 

  49. Stoer, J. & Bulirsch, R. Einführung in die Numerische Mathematik Vol. 2 (Springer, Berlin, 1978).

    MATH  Google Scholar 

  50. Schuster, H. G. Deterministic Chaos (Physik-Verlag, Weinheim, 1984).

    MATH  Google Scholar 

  51. Delone, N. B., Zon, B. A. & Krainov, V. P. Zh. eksp. teor. Fiz. 75, 445–453 (1978); Soviet Phys. JETP 48, 223–227 (1978).

    ADS  CAS  Google Scholar 

  52. Meerson, B. I., Oks, E. A. & Sasarov, P. V. Pis'ma Zh. eksp. teor. Fiz. 29, 79–82 (1979); JETP Lett. 29, 72–75 (1979).

    Google Scholar 

  53. Delone, N. B., Krainov, B. P. & Shepelyansky, D. L. Usp. Fiz. Nauk. 140, 355–392 (1983); Soviet Phys. Usp. 26, 551–572 (1983).

    ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blümel, R., Chen, J., Peik, E. et al. Phase transitions of stored laser-cooled ions. Nature 334, 309–313 (1988). https://doi.org/10.1038/334309a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/334309a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing