Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The three-dimensional structure of a DNA duplex containing looped-out bases

Abstract

Unpaired bases in DNA have been assigned a possible role in the mechanism of frameshift mutagenesis in sequences with repeated base pairs1. They also occur in quasipalindromic DNA sequences, which have been implicated in mutagenesis where there are no repeated base pairs, through the formation of single-stranded hairpin loops2,3. The conformation of unpaired bases in DNA has been the subject of numerous thermodynamic as well as high resolution NMR (nuclear magnetic resonance) studies (reviewed in ref. 4). The NMR studies in solution5 have shown that the duplex of the tridecamer DNA fragment d(CGCAGAATTCGCG) remains intact, and that the unpaired adenosines are stacked into the duplex. Having crystallized this oligonucleotide and determined its structure, we find its conformation in the crystal is close to that of a B-DNA duplex, with the two additional adenosines looped out from the double helix and causing little disruption of the rest of the structure.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Streisinger, G. et al. Cold Spring Harbor Symp. quant. Biol. 31, 77–84 (1966).

    Article  CAS  PubMed  Google Scholar 

  2. Ripley, L. S. Proc. natn. Acad. Sci. U.S.A. 79, 4128–4132 (1982).

    Article  ADS  CAS  Google Scholar 

  3. De Boer, J. G. & Ripley, L. S. Proc. natn. Acad. Sci. U.S.A. 81, 5528–5531 (1984).

    Article  ADS  CAS  Google Scholar 

  4. Patel, D. J., Shapiro, L. & Hare, D. Q. Rev. Biophys. 20, 35–112 (1987).

    Article  CAS  PubMed  Google Scholar 

  5. Patel, D. J. et al. Biochemistry 21, 445–451 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Hare, D., Shapiro, L. & Patel, D. J. Biochemistry 25, 7456–7464 (1986).

    Article  CAS  PubMed  Google Scholar 

  7. Saper, M. A. et al. J. molec. Biol. 188, 111–113 (1986).

    Article  CAS  PubMed  Google Scholar 

  8. Hope, H. Acta crystallogr. B44, 22–26 (1988).

    Article  Google Scholar 

  9. Rabinovich, D. & Shakked, Z. Acta Crystallogr. A40, 195–200 (1984).

    Article  Google Scholar 

  10. Wing, R. et al. Nature 287, 755–758 (1987).

    Article  ADS  Google Scholar 

  11. Dickerson, R. E., Kopka, M. L. & Pjura, P. in Biological Macromolecules and Assemblies: Nucleic Acids and Interactive Proteins (eds Jurnak, F. A. & McPherson, A.) 2, 38–126 (Wiley, New York, 1984).

    Google Scholar 

  12. Fratini, A. V., Kopka, M. L., Drew, H. R. & Dickerson, R. E. J. biol. Chem. 257, 14686–14707 (1982).

    CAS  PubMed  Google Scholar 

  13. Morden, K. M., Chu, Y. G., Martin, F. H. & Tinoco, I. Jr Biochemistry 22, 5557–5563 (1983).

    Article  CAS  Google Scholar 

  14. Miller, M., Harrison, R., Wlodawer, A., Appella, E. & Sussman, J. L. Nature 334, 85–86 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Roy, S., Sklenar, V., Appella, E. & Cohen, J. Bipolymers 26, 2041–2052 (1987).

    Article  CAS  Google Scholar 

  16. Pohl, F. M. & Jovin, T. M. J. molec. Biol. 67, 375–396 (1972).

    Article  CAS  PubMed  Google Scholar 

  17. Wang, A. H.-J. et al. Nature 282, 680–686 (1979).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Hirshberg, M., Sharon, R. & Sussman, J. L. J. biomolec. struct. Dynam. 5, 965–979 (1988).

    Article  CAS  Google Scholar 

  19. Sussman, J. L., Holbrook, S. R., Church, G. M. & Kim, S.-H. Acta crystallogr. 33, 800–804 (1977).

    Article  Google Scholar 

  20. Sussman, J. L., Holbrook, S. R., Warrant, R. W., Church, G. M. & Kim, S.-H. J. molec. Biol. 123, 607–630 (1978).

    Article  CAS  PubMed  Google Scholar 

  21. Jones, T. A. J. appl. Crystallogr. 11, 268–272 (1978).

    Article  CAS  Google Scholar 

  22. Hendrickson, W. A. & Konnet, J. H. in Biomolecular Structures, Conformation, Function and Evolution (eds Srinivasan, R., Subramanian, E. & Yathindra, N.), 1, 43–57 (Pergamon, Oxford, 1981).

    Book  Google Scholar 

  23. Westhof, E., Dumas, P. & Moras, D. J. molec. Biol. 184, 119–145 (1985).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Joshua-Tor, L., Rabinovich, D., Hope, H. et al. The three-dimensional structure of a DNA duplex containing looped-out bases. Nature 334, 82–84 (1988). https://doi.org/10.1038/334082a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/334082a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing