Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A yeast activity can substitute for the HeLa cell TATA box factor

Abstract

Most class B (II) promoter regions from higher eukaryotes contain the TATA box and upstream and enhancer elements1. Both the upstream and enhancer elements and their cognate factors have regulatory functions, whereas the TATA sequence interacts with the TATA box factor BTF1 to position RNA polymerase B and its ancillary initiation factors (STF, BTF2 and BTF3) to direct the initiation of transcription 30 base pairs downstream2. In many respects, class B promoter regions from the unicellular eukaryote Saccharomyces cerevisiae are similarly organized, containing upstream activating sequences that bear many similarities to enhancers3,4. Although they are essential for initiation, the yeast TATA sequences are located at variable distances and further from the start sites (40–120 base pairs), whose locations are primarily determined by an initiator element4. The basic molecular mechanisms that control initiation of transcription are known to be conserved from yeast to man: the yeast transcriptional trans-activator GAL4 can activate a minimal TATA box-containing promoter in human HeLa cells, and a human inducible enhancer factor, the oestrogen receptor, can activate a similar minimal promoter in yeast5–8. This striking evolutionary conservation prompted us to look for the presence in yeast of an activity that could possibly substitute for the human TATA box factor. We report here the existence of such an activity in yeast extracts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wasylyk, B. CRC Crit. Rev. Biochem. 23, (in the press).

  2. Zheng, X. M., Monocollin, V., Egly, J. M. & Chambon, P. Cell 50, 361–368 (1987).

    Article  CAS  Google Scholar 

  3. Guarente, L. A. Rev. Genet. 21, 425–452 (1987).

    Article  CAS  Google Scholar 

  4. Struhl, K. Cell 49, 295–297 (1987).

    Article  CAS  Google Scholar 

  5. Webster, N., Jin, S. R., Green, S., Hollis, M. & Chambon, P. Cell 52, 169–178 (1988).

    Article  CAS  Google Scholar 

  6. Kakidani, H. & Ptashne, M. Cell 52, 161–167 (1988).

    Article  CAS  Google Scholar 

  7. Metzger, D., White, J. & Chambon, P. Nature (in the press).

  8. Guarente, L. Cell 52, 303–305 (1988).

    Article  CAS  Google Scholar 

  9. Miyamoto, N. G. et al. Nucleic Acids Res. 12, 8779–8799 (1984).

    Article  CAS  Google Scholar 

  10. Dezélée, S., Wyers, F., Sentenac, A. & Fromageot, P. Eur. J. Biochem. 65, 543–552 (1976).

    Article  Google Scholar 

  11. Moncollin, V., Miyamoto, N. G., Zheng, X. M. & Egly, J. M. EMBO J. 5, 2577–2584 (1986).

    Article  CAS  Google Scholar 

  12. Davison, B. L., Egly, J. M., Mulvihill, E. R. & Chambon, P. Nature 301, 680–686 (1983).

    Article  ADS  CAS  Google Scholar 

  13. McNeil, J. B. & Smith, M. J. molec. Biol. 187, 363–378 (1986).

    Article  CAS  Google Scholar 

  14. Fire, A., Samuels, M. & Sharp, P. A. J. biol. Chem. 259, 2509–2516 (1984).

    CAS  Google Scholar 

  15. Reinberg, D., Horikoshi, M. & Roeder, R. G. J. biol. Chem. 262, 3322–3330 (1987).

    CAS  Google Scholar 

  16. Reinberg, D. & Roeder, R. G. J. biol. Chem. 262, 3310–3321 (1987).

    CAS  Google Scholar 

  17. Huet, J., Sentenac, A. & Fromageot, P. J. biol. Chem. 257, 2613–2618 (1982).

    CAS  PubMed  Google Scholar 

  18. Allison, L. A., Wong, J. K. C., Fitzpatrick, V. D., Moyle, M. & Ingles, C. J. Molec. cell. Biol. 8, 321–329 (1988).

    Article  CAS  Google Scholar 

  19. Bartolomei, M. S., Halden, N. F., Ruta Cullen, C. & Corden, J. L. Molec. cell. Biol. 8, 330–339 (1988).

    Article  CAS  Google Scholar 

  20. Biggs, J., Searles, L. L. & Greenleaf, A. L. Cell 42, 611–621 (1985).

    Article  CAS  Google Scholar 

  21. Takahashi, K. et al. Nature 319, 121–126 (1986).

    Article  ADS  CAS  Google Scholar 

  22. Sawadogo, M. & Roeder, R. G. Cell 43, 165–175 (1985).

    Article  CAS  Google Scholar 

  23. Chodosh, L. A. et al. Cell 53, 25–35 (1988).

    Article  CAS  Google Scholar 

  24. Wasylyk, C. & Wasylyk, B. EMBO J. 5, 553–560 (1986).

    Article  CAS  Google Scholar 

  25. Moran, L. et al. Cell 17, 1–8 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavallini, B., Huet, J., Plassat, JL. et al. A yeast activity can substitute for the HeLa cell TATA box factor. Nature 334, 77–80 (1988). https://doi.org/10.1038/334077a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/334077a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing