Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Force measurements by micromanipulation of a single actin filament by glass needles

Abstract

Single actin filaments (7nm in diameter) labelled with fluorescent phalloidin can be clearly seen by video-fluorescence microscopy1. This technique has been used to observe motions of single filaments in solution and in several in vitro movement assays1–5. In a further development of the technique, we report here a method to catch and manipulate a single actin filament (F-actin) by glass microneedles under conditions in which external force on the filament can be applied and measured. Using this method, we directly measured the tensile strength of a filament (the force necessary to break the bond between two actin monomers) and the force required for a filament to be moved by myosin or its proteolytic fragment bound to a glass surface in the presence of ATP. The first result shows that the tensile strength of the F-actin–phalloidin complex is comparable with the average force exerted on a single thin filament in muscle fibres during isometric contraction. This force is increased only slightly by tropomyosin. The second measurement shows that the myosin head (subfragment-1) can produce the same ATP-dependent force as intact myosin. The magnitude of this force is comparable with that produced by each head of myosin in muscle during isometric contraction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Yanagida, T., Nakase, M., Nishiyama, K. & Oosawa, F. Nature 307, 58–60 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Honda, H., Nagashima, H. & Asakura, S. J. molec. Biol. 191, 113–133 (1986).

    Article  Google Scholar 

  3. Kron, S. J. & Spudich, J. A. Proc. natn. Acad. Sci. U.S.A. 83, 62–72 (1986).

    Article  Google Scholar 

  4. Harada, Y., Noguchi, A., Kishino, A. & Yanagida, T. Nature 326, 805–808 (1987).

    Article  ADS  CAS  Google Scholar 

  5. Yano-Toyoshima, Y. et al. Nature 328, 536–539 (1986).

    Article  Google Scholar 

  6. Dancker, P., Low, I., Hasselbach, W. & Wieland, Th. Biochim. biophys. Acta 400, 407–414 (1975).

    Article  CAS  Google Scholar 

  7. Kamimura, S. & Takahashi, K. Nature 293, 266–268 (1981).

    Article  Google Scholar 

  8. Oosawa, F. Biorheology 14, 11–19 (1977).

    Article  CAS  Google Scholar 

  9. McLachlan, A. D. & Stewart, M., J. molec. Biol. 98, 293–304 (1975).

    Article  CAS  Google Scholar 

  10. Phillips, G. N. Jr, Fillers, J. P. & Cohen, C. J. molec. Biol. 192, 111–131 (1986).

    Article  CAS  Google Scholar 

  11. Prochniewicz-Nakayama, E., Yanagida, T. & Oosawa, F. J. Cell Biol. 97, 1663–1667 (1983).

    Article  CAS  Google Scholar 

  12. Yano, M., Yamamoto, Y. & Shimizu, H. Nature 299, 557–559 (1982).

    Article  ADS  CAS  Google Scholar 

  13. Sheetz, M. P. & Spudich, J. A. Nature 303, 31–35 (1983).

    Article  ADS  CAS  Google Scholar 

  14. Hynes, T., Block, S. M., White, B. T. & Spudich, J. A. Cell 48, 953–963 (1987).

    Article  CAS  Google Scholar 

  15. Lanzetta, P. A., Alvarez, L. J., Reinach, P. S. & Candia, O. A. Analyt. Biochem. 100, 95–97 (1979).

    Article  CAS  Google Scholar 

  16. Kamimura, S. Appl. Optics 26, 3425–3427 (1987).

    Article  ADS  CAS  Google Scholar 

  17. Gelles, J., Schnapp, B. J. & Sheetz, M. P. Nature 331, 450–453 (1988).

    Article  ADS  CAS  Google Scholar 

  18. Yoneda, M. J. exp. Biol. 37, 461–468 (1960).

    Google Scholar 

  19. Margossian, S. S. & Lowey, S. J. molec. Biol. 74, 313–330 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kishino, A., Yanagida, T. Force measurements by micromanipulation of a single actin filament by glass needles. Nature 334, 74–76 (1988). https://doi.org/10.1038/334074a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/334074a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing