Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An anti-sense chalcone synthase gene in transgenic plants inhibits flower pigmentation

Abstract

In most plants flower pigments derive from the flavonoid biosynthesis pathway. Consistent with this pathway in Petunia hybrida the key enzyme in flavonoid synthesis, chalcone synthase, is synthesized in the flower corolla, tube and anthers1. Here we show that constitutive expression of an 'anti-sense' chalcone synthase gene in transgenic petunia and tobacco plants results, with high frequency, in an altered flower pigmentation due to a reduction in levels of both the messenger RNA for the enzyme and the enzyme itself. The pattern of pigmentation varies among flowers of different transgenic plants, indicating that the activity of the anti-sense gene is influenced by DNA sequences that border its site of insertion in both a quantitative and a qualitative way. Backcrossing experiments show that the different pigmentation phenotypes resulting from the expression of anti-sense chalcone synthese gene(s) are stably inherited. These data establish that secondary metabolism in plants can be manipulated using transgenic plants that constitutively synthesize anti-sense RNA.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Koes, R. E., et al. Nucl. Acids Res. 4, 5229–5239 (1986).

    Article  Google Scholar 

  2. Rosenberg, U. B., Preiss, A., Seifert, E., Jäckie, H. & Knipple, D. C. Nature 313, 703–706 (1985).

    Article  ADS  CAS  Google Scholar 

  3. Cabrera, C. V., Alonso, M. C., Johnston, P., Phillips, R. G. & Lawrence, P. A. Cell 50, 659–663 (1987).

    Article  CAS  Google Scholar 

  4. Boulay, J. L., Dennefeld, C. & Alberga, A. Nature 330, 395–398 (1987).

    Article  ADS  CAS  Google Scholar 

  5. Knecht, D. A. & Loomis, W. F. Science 236, 1081–1086 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Rothstein, S. J., DiMaio, J., Strand, M. & Rice, D. Proc. natn. Acad. Sci. U.S.A. 84, 8439–8443 (1987).

    Article  ADS  CAS  Google Scholar 

  7. Ecker, J. R. & Davis, R. W. Proc. natn. Acad. Sci. U.S.A. 83, 5372–5376 (1986).

    Article  ADS  CAS  Google Scholar 

  8. Reif, H. J., Niesbach, U., Dcumling, B. & Saedler, H. Molec. gen. Genet. 199, 208–215 (1985).

    Article  CAS  Google Scholar 

  9. Izant, J. G. & Weintraub, H. Science 229, 345–352 (1985).

    Article  ADS  CAS  Google Scholar 

  10. Bevan, M. W., Mason, S. E. & Goelet, P. EMBO J. 4, 1921–1926 (1985).

    Article  CAS  Google Scholar 

  11. Wallroth, M., Gerats, A. G. M., Rogers, S. G., Fraley, R. T. & Horsch, R. B. Molec. gen. Genet. 202, 6–15 (1986).

    Article  CAS  Google Scholar 

  12. Meyer, P., Heidmann, I., Forkmann, G. & Saedler, H. Nature 330, 677–678 (1987).

    Article  ADS  CAS  Google Scholar 

  13. Green, J. P., Pines, O. & Innouge, M. A. Rev. Biochem. 55, 569–597 (1986).

    Article  CAS  Google Scholar 

  14. Jones, J. D. G., Dunsmuir, P. & Bedbrook, J. EMBO J. 4, 2411–2418 (1985).

    Article  CAS  Google Scholar 

  15. Bevan, M. Nucl. Acids Res. 12, 8711–8721 (1984).

    Article  CAS  Google Scholar 

  16. Ditta, G., Stanfield, S., Corbin, D. & Helinski, D. R. Proc. natn. Acad. Sci. U.S.A. 77, 7347–7351 (1980)

    Article  ADS  CAS  Google Scholar 

  17. Horsch, R. B. et al Science 227, 1229–1231 (1985).

    Article  ADS  CAS  Google Scholar 

  18. Koes, R. E., Spelt, C. E., Mol, J. N. M. & Gerats, A. G. M. Plant molec. Biol. 10, 159–169 (1987).

    Article  CAS  Google Scholar 

  19. Mol, J. N. M. et al. Molec. gen. Genet. 192, 424–429 (1983).

    Article  CAS  Google Scholar 

  20. Tunen, A. J. van & Mol, J. N. M. Archs Biochem. Biophys. 257, 85–91 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

van der Krol, A., Lenting, P., Veenstra, J. et al. An anti-sense chalcone synthase gene in transgenic plants inhibits flower pigmentation. Nature 333, 866–869 (1988). https://doi.org/10.1038/333866a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/333866a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing