Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Efficiency of hydrothermal ore formation and the Panasqueira W–Cu(Ag)–Sn vein deposit


Hydrothermal ore bodies are the concentrated manifestations of the large-scale mass transfer of ore-forming elements by aqueous fluids flowing through the Earth's crust. Existing mass transfer estimates1–3 for hydrothermal ore-forming systems are based on ore reserve data, which do not take into account the mass of ore-forming elements dispersed in the metasomatized crust around the ore bodies. Here I report a method for the quantitative determination of this dispersed mass and hence the efficiency of ore formation. Application to the Panasqueira W–Cu(Ag)–Sn vein deposit in Portugal shows that only a few per cent of the hydrothermal ly introduced material (W, 33% ; Cu, 8% ; Sn, 3% ; Zn, 1.5%) is concentrated in the ore body itself, implying that much greater volumes of ore-forming fluid are required than previously supposed. The efficiency of Panasqueira vein formation in concentrating these elements is variable, reflecting the relative importance of fluid pressure4–6 and acid-consuming fluid/rock reactions7 in determining different ore mineral solubilities, but it is broadly similar to the efficiency of sea-water mixing in immediately removing Pb and Zn from black smoker fluids8.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout


  1. Elder, J. W. Geothermal Systems (Academic, London, 1981).

    Google Scholar 

  2. Cathles, L. M. Econ. Geol. 5, 439–487 (1983).

    Google Scholar 

  3. Campbell, A., Rye, D. & Petersen, U. Econ. Geol. 79, 1818–1832 (1984).

    Article  CAS  Google Scholar 

  4. Hemley, J. J., Cygan, G. L. & d'Angelo, W. M. Geology 14, 377–379 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Helgeson, H. C. & Lichtner, P. C. J. geol. Soc. Lond. 144, 313–326 (1987).

    Article  CAS  Google Scholar 

  6. Fournier, R. O. Rev. econ. Geol. 2, 45–62 (1985).

    Google Scholar 

  7. Eugster, H. P. Mineralog. Mag. 49, 7–23 (1985).

    Article  ADS  CAS  Google Scholar 

  8. Converse, D. R., Holland, H. D. & Edmond, J. M. Earth planet. Sci. Lett. 69, 159–175 (1984).

    Article  ADS  Google Scholar 

  9. Rose, A. W., Hawkes, H. E. & Webb, J. S. Geochemistry in Mineral Exploration (Academic, New York, 1979).

    Google Scholar 

  10. Ewers, G. R. & Keays, R. R. Econ. Geol. 72, 1337–1354 (1977).

    Article  CAS  Google Scholar 

  11. Edmond, J. M., von Damm, K. L., McDuff, R. E. & Measures, C. I. Nature 297, 187–196 (1982).

    Article  ADS  CAS  Google Scholar 

  12. Boyle, R. W. (ed.) Geochemical exploration: Canadian Inst. Min. Metall. Vol. 2 (1971).

  13. Govett, G. J. S. & Pantazis, Th.M. Trans. Inst. Min. Metall. B80, 27–46 (1971).

    Google Scholar 

  14. Polya, D. A., Solomon, M., Eastoe, C. J. & Walshe, J. L. Econ. Geol. 81, 1341–1355 (1986).

    Article  CAS  Google Scholar 

  15. MacLean, W. H. & Kranidiotos, P. Econ. Geol. 82, 951–962 (1987).

    Article  CAS  Google Scholar 

  16. Lavery, J. H. J. geochem. Explor. 23, 35–60 (1985).

    Article  CAS  Google Scholar 

  17. Bussink, R. W. Geologica Ultraiectina 33 (1984).

  18. Oosterom, M. G., Bussink, R. W. & Vriend, S. P. Miner. Deposita 19, 283–288 (1984).

    Article  ADS  CAS  Google Scholar 

  19. Kelly, W. C. & Rye, R. O. Econ. Geol. 74, 1721–1822 (1979).

    Article  CAS  Google Scholar 

  20. Clark, A. H. Trans. Inst. Min. Metall. 73, 813–824 (1964).

    Google Scholar 

  21. Kelly, W. C. Servicos Geol. Portugal Commun. 81, 239–244 (1977).

    Google Scholar 

  22. d'Orey, F. C. Servicos Geol. Portugal Commun. 52, 117–167 (1967).

    CAS  Google Scholar 

  23. Marignac, M. C. C.R. Acad. Sci. Paris 277D, 269–272 (1973).

    Google Scholar 

  24. Marignac, M. C. Econ. Geol. 77, 1263–1266 (1982).

    Article  Google Scholar 

  25. Polya, D. A. Abstr. Vol. Min. Dep. Study Group (University of Southampton, 1986).

    Google Scholar 

  26. Wimmers, D. Mineralog. Mag. 49, 745–748 (1985).

    Article  ADS  CAS  Google Scholar 

  27. Thadeu, D. Servicos Geol. Portugal Commun. 32, 5–64 (1951).

    Google Scholar 

  28. Bussink, R. W., Kreulen, R. & de Jong, A. F. M. Bull. Mineralog. 107, 703–713 (1984).

    Article  CAS  Google Scholar 

  29. Mello Mendes, F. Comportamento Mecanico de Rochas Xistosas (Imprensa Portuguse, Porto, 1960).

    Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Polya, D. Efficiency of hydrothermal ore formation and the Panasqueira W–Cu(Ag)–Sn vein deposit. Nature 333, 838–841 (1988).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing