Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The extended solar activity cycle

Abstract

The solar cycle has been defined in terms of a sequential periodic variation in sunspot numbers, the period being the interval between successive minima, currently averaging 11.2 years. But a number of observations have indicated that the activity cycle may begin at higher latitudes before the emergence of the first sunspots of the new cycle. Here we report results from sunspot cycle 21 concerning the ephemeral active regions, the coronal green-line emission and the torsional oscillation signal, which confirm the earlier suggestions. In particular, we report the appearance of a high-latitude population of ephemeral active regions in the declin-ing phase of sunspot cycle 21, with orientations that tend to favour those for cycle 22 rather than 21. Taken together, these data indicate that sunspot activity is simply the main phase of a more extended cycle that begins at high latitudes before the maximum of a given sunspot cycle and progresses towards the equator during the next 18–22 yr, merging with the conventional 'butterfly diagram' (the plot of the latitudes of emerging sunspots against time) as it enters sunspot latitudes. We suggest that this extended cycle may be understood in the perspective of a model of giant convective rolls that generate dynamo waves propagating from pole to equator.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Waldmeier, M. Die Sonnenkorona Vol. 2 (Birkhauser, Basel, 1957).

    Book  Google Scholar 

  2. Trellis, M. Ann. D'Ap. Suppl. No. 5 (1957).

  3. Bretz, M. C. & Billings, D. E. Astrophys. J. 129, 134–145 (1959).

    Article  CAS  ADS  Google Scholar 

  4. Leroy, J.-L. & Noens, J.-C. Astr. Astrophys. 120, L1–2 (1983).

    ADS  Google Scholar 

  5. Harvey, K. L. & Martin, S. F. Solar Phys. 32, 389–402 (1973).

    Article  ADS  Google Scholar 

  6. Harvey, K. L., Harvey, J. W. & Martin, S. F. Solar Phys. 40, 87–102 (1975).

    ADS  Google Scholar 

  7. Martin, S. F. & Harvey, K. L. Sol. Phys. 64, 93–108 (1979).

    Article  CAS  ADS  Google Scholar 

  8. Legrand, J. P. & Simon, P. A. Sol. Phys. 70, 173–195 (1981).

    Article  ADS  Google Scholar 

  9. Howard, R. & LaBonte, B. J. Astrophys. J. 239, L33–L36 (1980).

    Article  ADS  Google Scholar 

  10. LaBonte, B. J. & Howard, R. Sol. Phys. 75, 161–178 (1982).

    Article  ADS  Google Scholar 

  11. Snodgrass, H. B. Sol. Phys. 110, 35–50 (1987).

    Article  ADS  Google Scholar 

  12. Howard, R. F. & LaBonte, B. J. Sol. Phys. 74, 131–145 (1981).

    Article  ADS  Google Scholar 

  13. Babcock, H. W. Astrophys. J. 133, 572–587 (1961).

    Article  ADS  Google Scholar 

  14. Parker, E. N. Astrophys. J. 122, 293–314 (1955).

    Article  ADS  MathSciNet  Google Scholar 

  15. Parker, E. N. A. Rev. Astr. Astrophys. 8, 1–30 (1970).

    Article  ADS  Google Scholar 

  16. Parker, E. N. Sol. Phys. 110, 11–22 (1987).

    Article  ADS  Google Scholar 

  17. Yoshimura, H. Astrophys. J. 247, 1102–1112 (1987).

    Article  ADS  Google Scholar 

  18. Schussler, M. Astr. Astrophys. 94, L17–L18 (1981).

    ADS  Google Scholar 

  19. Snodgrass, H. B. & Wilson, P. R. Nature 328, 696–699 (1987).

    Article  ADS  Google Scholar 

  20. Gilman, P. A. Astrophys. J. Supp. Ser. 53, 243–248 (1983).

    Article  ADS  Google Scholar 

  21. Glatzmaier, G. A. Astrophys. J. 291, 300–307 (1985).

    Article  ADS  Google Scholar 

  22. Eltayeb, I. A. Proc. R. Soc. 326, 229–254 (1972).

    Article  ADS  Google Scholar 

  23. Howard, R. F. Nature 328, 667–668 (1987).

    Article  ADS  Google Scholar 

  24. Wilson, P. R. Sol. Phys. (in the press).

  25. Parker, E. N. Astrophys. J. 312, 868–879 (1987).

    Article  ADS  Google Scholar 

  26. Kuhn, J. R., Libbrecht, K. G. & Dicke, R. H. Nature 328, 326 (1987).

    Article  ADS  Google Scholar 

  27. McIntosh, P. S. M. & Wilson, P. R. Sol. Phys. 97, 59–79 (1985).

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, P., Altrocki, R., Harvey, K. et al. The extended solar activity cycle. Nature 333, 748–750 (1988). https://doi.org/10.1038/333748a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/333748a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing