Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Detection of phosphine: new aspects of the phosphorus cycle in the hydrosphere

Abstract

The role of phosphorus in limiting organic matter production and in causing eutrophication has been in the forefront of hydrobiological research during the past 30–50 yr1–7. Comparing the cycles of major biogenic elements, it is evident that, with the exception of phosphorus, each of them contains gaseous substances (for example, CO2, CH4, O2, N2, NH3, H2S and volatile organic sulphur compounds) which, because of their gaseous state, can leave aquatic systems8–16. We examined the phosphorus cycle of open-air sewage treatment plants and a deficit (30–45%) in the phosphorus mass balance was found which cannot be explained by knowledge based on earlier research on this cycle of the hydrosphere. By developing special sampling and analytical methods, we have shown that gases released from the sewage treatment plants and from the sediments of shallow (1–2 m deep) waters contain a reduced, gaseous phosphorus compound: phosphine. According to our measurements and calculations, about 5g of phosphorus per day was released as phosphine from an Imhoff tank settling 2,000 m3 per day of raw sewage. Under laboratory conditions, it was also demonstrated that phosphine is released by bacterial reduction from a medium containing inorganic phosphorus. The phosphorus content of the medium decreases by nearly one half. Our results on the metabolic importance of phosphine formation and release suggest that 25–50% of the phosphorus deficit in open-air sewage treatment plants can be explained by the release of phosphine into the atmosphere. These results change our understanding of the aquatic phosphorus cycle; former ideas about the phosphorus budget should be revised.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Sawyer, C. N. Sewage ind. Wastes, 24, 768–776 (1952).

    CAS  Google Scholar 

  2. 2

    Ohle, W. Vom Wasser 20, 11–23 (1953).

    Google Scholar 

  3. 3

    Lund, J. W. Nature 214, 557–558 (1967).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Thomas, E. A. Mitt. int. Verein. theor. angew. Limnol. 14, 231–242 (1968).

    Google Scholar 

  5. 5

    Thomas, E. A., Wass. u, Energ. Wirt. 60, 115–125 (1968).

    Google Scholar 

  6. 6

    Edmondson, W. T. Science, Wash. 169, 690–691 (1970).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Vollenweider, R. A. & Dillon, P. J. The Application of the Phosphorus Loading Concept to Eutrophication Research (Nat. Res. Council of Canada, Ottawa, 1974).

    Google Scholar 

  8. 8

    Hutchinson, G. E. A Treatise on Limnology I (Wiley, New York, 1957).

    Google Scholar 

  9. 9

    Reid, G. K. Ecology of Inland Waters and Estuaries (Van Nostrand, New York, 1961).

    Google Scholar 

  10. 10

    Dussart, B. Limnologie (Gauthier-Villars, Paris, 1966).

    Google Scholar 

  11. 11

    Wetzel, R. G. Limnology (Saunders, Philadelphia, 1975).

    Google Scholar 

  12. 12

    Svensson, B. H. & Söderlund, R. (eds) Nitrogen, Phosphorus and Sulphur - Global Cycles. SCOPE Report 7. Ecol. Bull., Stockholm, 22, 1–192 (1976).

  13. 13

    Emsley, J. in The Handbook of Environmental Chemistry Vol. 1, Part A (ed. Hutzinger, O.) 147–167 (Springer, Berlin, 1980).

    Google Scholar 

  14. 14

    Golterman, H. L. & Kouwe, F. A. in The Functioning of Freshwater Ecosystems IBP 22 (eds Le Cren, E. D. & Lowe-McConnell, R. H.) 85–140 (Cambridge University Press, 1980).

    Google Scholar 

  15. 15

    Moss, B. Ecology of Fresh Waters (Blackwell Scientific, Oxford, 1980).

    Google Scholar 

  16. 16

    Uhlmann, D. Hydrobiologie (Gustav Fischer, Jena, 1982).

    Google Scholar 

  17. 17

    Dévai, I. Acta Biol. Debrecina 14, 51–65 (1977).

    Google Scholar 

  18. 18

    Dévai, I. Acta Biol. Debrecina 14, 67–78 (1977).

    Google Scholar 

  19. 19

    Dévai, I. & Woynarovich, E. in Some Approaches to Saprobiological Problems (ed. Sudzuki, M.) 37–47 (Sanseido, Tokyo, 1981).

    Google Scholar 

  20. 20

    Dévai, I. et al. Envir. Pollut. B8, 155–160 (1984).

    Article  Google Scholar 

  21. 21

    Dévai, I., Dévai, Gy. & Wittner, I. Arch. Hydrobiol. Monogr. Beiträge 4, 534–579 (1985).

    Google Scholar 

  22. 22

    Heim, Cs., Dévai, I. & Harangi, J. J. Chromatogr. 295, 259–263 (1984).

    CAS  Article  Google Scholar 

  23. 23

    Gmelins Handbuch der anorganischen Chemie. Phosphor. Part C (Verlag Chemie, Weinheim, 1965).

  24. 24

    Stumm, W. & Morgan, J. J. Aquatic Chemistry. An Introduction Emphasizing Chemical Equilibria in Natural Waters (Wiley-lnterscience, New York, 1970).

    Google Scholar 

  25. 25

    David, R. Radiat. Environ. Biophys. 25, 219–229 (1986).

    CAS  Article  Google Scholar 

  26. 26

    Iverson, W. P., Olson, G. J. & Heverly, L. F. in Biologically Induced Corrosion (ed. Dexter, S. C.) 154–161 (Natn. Assoc. of Corrosion Engineers, Houston, Texas, 1985).

    Google Scholar 

  27. 27

    Dévai, I. Acta Biol. Debrecina (in the press).

  28. 28

    Murphy, J. & Riley, J. P. Analytica Chim. Acta 27, 31–36 (1962).

    CAS  Article  Google Scholar 

  29. 29

    Gales, M. E., Julian, E. C. & Kroner, R. C. J. Am. Wat. Wks Ass. 58, 1363–1368 (1966).

    CAS  Article  Google Scholar 

  30. 30

    Horváth, I. Mechanical Waste Treatment VIZDOK (Budapest, 1973).

    Google Scholar 

  31. 31

    McNair, H. M. & Bonelli, E. J. Basic Gas Chromatography (Consolidated Printers, Berkeley, California, 1969).

    Google Scholar 

  32. 32

    Rheinheimer, G. Mikrobiologie der Gewässer (Gustav Fischer, Jena, 1971).

    Google Scholar 

  33. 33

    Daubner, I. Mikrobiologie des Wassers (Akademie, Berlin, 1972).

    Google Scholar 

  34. 34

    Rodina, A. G. Methods in Aquatic Microbiology (University Park Press, Baltimore, 1972).

    Google Scholar 

  35. 35

    Gorlenko, V. M., Dubinina, G. A. & Kuznetsov, S. I. The Ecology of Aquatic Micro-organisms (E. Schweizerbart, Stuttgart, 1983).

    Google Scholar 

  36. 36

    Tóth, L. Res. Water Quality Technol., Budapest 2, 48–55 (1972).

    Google Scholar 

  37. 37

    Kov´cs, M. & Tóth, L. Proc. VITUKI, Budapest 14, 49–74 (1979).

    Google Scholar 

  38. 38

    Dévai, Gy. in Chironomidae (ed. Murray, D. A.) 269–273 (Pergamon, Oxford, 1980).

    Google Scholar 

  39. 39

    Bossard, A., Kamga, R. & Raulin, F. J. Chromatogr. 330, 400–402 (1985).

    CAS  Article  Google Scholar 

  40. 40

    Hashimoto, S., Fujiwara, K. & Fuwa, K. Analyt. Chem. 57, 1305–1309 (1985).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dévai, I., Felföldy, L., Wittner, I. et al. Detection of phosphine: new aspects of the phosphorus cycle in the hydrosphere. Nature 333, 343–345 (1988). https://doi.org/10.1038/333343a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing