
© 1988 Nature  Publishing Group

216 SCIENTIFIC CORRESPONDENCE-------N-A-TU-R-E-V-O-L.-33-J _19_M_A_Y_19_XX 

Pade approximation and linear prediction methods modified so that the LP coefficients are 
evaluated with z-transfrom in the neigh
bourhoods of the actual roots. The 
improvement of the resolving power and 
numerical accuracy in either their Laplace 
transform or our z-transform depends on 
how closely one can estimate the expan
sion centre or the actual roots. In the Pade 
method the Taylor series expansion of the 
Laplace integral can be made only at one 
particular point. Thus, clusters close 
to the expansion centre may be better 
resolved, but distant clusters may still 
remain unresolved. In contrast, the LP 
approach is preferable because the 
z-transform can be evaluated simulta
neously around several clusters, resulting 
in a more global improvement in resolu
tion. Finally, the Laplace integral trans
form is similar to z-transform, except that 
the former is in a continuous and the latter 
is in a discretc form. As most experimental 
data are recorded as discrete points, the z
transform seems to be more appropriate. 
Comparing the stability between the 
Longman method and the matrix decom
position method with a least-squares fit, 
the LP routine using QRD or SVD appears 
to be the method of choice. 

SIR-Yeramian and Claverie l use a method 
combining the Pade rational approximation 
and the Laplace transform to extract the 
coefficients and exponents in multi
exponential data. They emphasized three 
important features: (1) The assumption of 
the number of decaying exponential 
components involved in the total signal is 
not necessary; (2) increased numerical 
accuracy results if the Taylor series of the 
Laplace integral is made in the neighbour
hood of the actual decay rates; and (3) 
their method can solve the Lanczos 
multiple exponential problem. We wish to 
point out that the above features were 
already known and could be implemented 
in the framework of Prony's linear predic
tion' (LP) and z-transform' theory. More 
importantly, the LP methods using the 
Householder decomposition" (LPQRD) 
or the singular value decomposition' 
(LPSVD) are more stable and accurate 
than the Longman method" used by them. 
Both LPQRD and LPSVD methods have 
been used for some time to extrapolate 
truncated signals and analyse signals of 
exponentially damped sinusoid without a 
priori assumption of the total number of 
spectral components. The functional form 
of the Pade approximation is very similar 
to the linear prediction z-transform (LPZ) 
spectral formula' that we have derived 
assuming the signal is composed from a 
finite number of damped sinusoids. 

Unlike QRD or SVD, their Longman 
algorithm" may have two limitations: (1) 
In the Longman approach, the LP coeffi
cients in the Pade table are completely 
determined from the first 2M data points, 
where M corresponds to the LP filter 
length; and (2) The Longman algorithm 
can be unstable, especially when the first 
few data points are close to zero. On the 
other hand, QRD or SVD is favoured 
because of four points: (1) LPQRD or 
LPSVD is not subject to signal truncation 
problems. In contrast, the Laplace integral 
transform used in ref. 1 can be inaccurate 
if the signal is severely truncated because 
the Laplace integral should be evaluated 
in time from zero to infinity. (2) The 
decomposition methods work well with 
singular matrices and have better stability. 
(3) All data can be used to calculate the LP 
coefficients, yielding better accuracy than 
the Longman method which uses fewer 
data. And (4) QRD or SVD provides 
eigenvalues and matrix rank determination 
that can be used to reject noise components 
effectively. Once the LP coefficients are 
determined from any of the above methods, 
the frequencies and the decay rates can be 
evaluated by solving the roots of the 
polynomial formed by the LP co-efficients. 
Finally, the corresponding amplitude and 
phase for each spectral component can be 
determined from a linear least-squares fit. 

To illustrate the advantages of the 

I LPQRD method over the Longman 
method, we present a comparison using a 
simulated signal of two close components 
(see table). Fifty data points are generated 
with a step of 0.1 s, where data values are 
rounded to the second decimal. 

Comparison of the LPQRD and 
Longman methods 

Frequency Decay Amplitude Phase 
(Hz) time(s) (degree) 

Theoretical 
values I. 00 2.00 1.00 0.0 
LPQRD 1.10 1.00 2.00 0.0 
M=5 1.0 I 2.47 0.S5 - 16.4 

1.10 I.OS 2.19 5.H 
M=IO 1.00 1.95 1.04 0.7 

1.10 1.00 1.96 -0.4 
M=20 1.00 1.95 1.06 -0.5 

1.10 1.00 1.94 0.2 
Longman"s 
M=5 1.05 1.24 2.n -0.3 

1.33 0.46 O.2H -4.1 
M=IO 1.01 1.62 1.47 4.0 

1.12 0.93 1.55 -3.5 
M=20 1.01 2.21 0.95 6.1 

1.10 1.07 2.()9 -13.5 

In this test we compared both methods 
with a z-transform expansion at infinity, 
as in the conventional Prony method. 
They all failed to resolve two components 
with M = 3 (not listed in table), and the 
Longman method still failed with M = 5. 

As nicely illustrated by Yeramian and 
Claverie l

, in many cases better accuracy 
can be obtained if the Taylor expansion of 
the Laplace integral can be made at some 
points other than with a Zo at infinity. Simi
larly, within the framework of the LP and 
z-transform' theory, the matrix equation 
of the linear prediction can be slightly 
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How fecundity balances mortality in birds 
SIR-Birth rates must balance death rates clutch size (r = 0,143) but is negatively 
if natural populations are to persist. correlated with age of maturity (r = 

Saethd demonstrated that two compo- -0.478, P < 0,01) and with survival (r = 
nents of fecundity, clutch size and age at -0.374, P < 0.05) when body weight is 
maturity, help compensate for differences partialled out. But clutch size is not signifi
in mortality among European bird species. cantly correlated with body weight across 
But fecundity also depends on a third the sample of European birds (r = 
variable, the number of clutches per year, -0.284), whereas both number of clutches 
for which data are available' on Saether's per year and age at first breeding are signi-
107 species, Following Saether, we ficantly correlated with body weight (r = 
performed analyses at the family level (n -0.658,0.614, both P < 0.001). 
=34), Number of clutches per year Similar patterns of covariation among 
decreases with increased survival rate (r = the fecundity factors and body weight 
-0.634, P < 0,001, and thus also compen- occur in a much larger sample of 3,142 
sates for mortality. Annual fecundity, species from 149 families2

, We agree with 
the product of clutch size and number of Saether that the cause of such differences 
clutches, is even more closely correlated may be evolutionary or a direct result of 
with survival (r = -0.824, P < 0.001). density-dependent processes. 

Saether l also considered the relation- PETER M. BENNE1T 
ship of clutch size and age at maturity to Institute of Zoology, 
each other and to survival after the effects Zoological Society of London, 
of body size had been removed by partial London NWI 4RY, UK 
correlation analysis. He found that families PAUL H. HARVEY 
with larger clutches also have earlier ages Department of Zoology, 
at maturity when body weight is controlled University of Oxford, Oxford OX1 3PS, UK 
for. We find that number of clutches per I. Saether, B.-E. Nature331,616-617 (1988). 
year is not significantly correlated with 2 Bennett, P M. thesis, Univ. Sussex (1986). 


	How fecundity balances mortality in birds

