Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ankyrin and spectrin associate with voltage-dependent sodium channels in brain

Abstract

The segregation of voltage-dependent sodium channels to specialized regions of the neuron is crucial for propagation of an action potential1–5. Studies of their lateral mobility indicate that sodium channels are freely mobile on the neuronal cell body but are immobile at the axon hillock, presynaptic terminal and at focal points along the axon6. To elucidate the mechanisms that regulate sodium channel topography and mobility, we searched for specific proteins from the brain that associate with sodium channels. Here we show that sodium channels labelled with 3H-saxitoxin (STX) are precipitated in the presence of exogenous brain ankyrin by anti-ankyrin antibodies and that 125I-labelled ankyrin binds with high affinity to sodium channels reconstituted into lipid vesicles. The cytoplasmic domain of the erythrocyte anion transporter competes for the latter interaction. Neither the neuronal GAB A (γ-aminobutyric acid) receptor channel complex nor the dihy-dropyridine (DHP) receptor bind brain ankyrin. The results indicate that brain ankyrin links the voltage-dependent sodium channel to the underlying cytoskeleton and may help to maintain axolem-mal membrane heterogeneity and control sodium channel mobility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Waxman, S. G. & Ritchie, J. M. Science, 228, 1502–1507 (1985).

    Article  ADS  CAS  Google Scholar 

  2. Coombs, J. S., Eccles, J. C. & Fatt, P. J. Physiol., Lond. 130, 291–325 (1985).

    Article  Google Scholar 

  3. Kristol, C., Sandie, C. & Akert, K. Brain Res. 142, 391–400 (1978).

    Article  CAS  Google Scholar 

  4. Rosenbluth, J. J. Neurocytol. 5, 731–745 (1976).

    Article  CAS  Google Scholar 

  5. Chiu, S. Y. & Ritchie, J. M. Adv. Neurol. 31, 313–328 (1981).

    CAS  PubMed  Google Scholar 

  6. Angelides, K. J., Elmer, L. W., Loftus, D. & Elson, E. L. J. Cell Biol. (in the press).

  7. Elmer, L. W., O'Brien, B. J., Nutter, T. J. & Angelides, K. J. Biochemistry 24, 8128–8137 (1985).

    Article  CAS  Google Scholar 

  8. Hartshorne, R. P. & Catterall, W. A. J. biol Chem. 259, 1667–1675 (1984).

    CAS  PubMed  Google Scholar 

  9. Catterall, W. A. Science 223, 653–661 (1984).

    Article  ADS  CAS  Google Scholar 

  10. Davis, J. Q. & Bennett, V. J. biol. Chem. 258, 7757–7766 (1983).

    CAS  Google Scholar 

  11. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

  12. Davis, J. Q. & Bennett, V. J. biol. Chem. 259, 16198–16206 (1986).

    Google Scholar 

  13. Bennett, V., Baines, A. J. & Davis, J. Q. Cell Biochem. 29, 157–169 (1985).

    Article  CAS  Google Scholar 

  14. Davis, J. & Bennett, V. J. biol. Chem. 261, 16198–16206 (1986).

    CAS  PubMed  Google Scholar 

  15. Davis, J. & Bennett, V. J. biol. Chem. 259, 1874–1881 (1984).

    CAS  PubMed  Google Scholar 

  16. Nelson, W. J. & Veshnocl P. J. Nature 328, 533–536 (1987).

    Article  ADS  CAS  Google Scholar 

  17. Davis, J. & Bennett, V. J. biol. Chem. 259, 13550–13559 (1984).

    CAS  PubMed  Google Scholar 

  18. Stumer, W., Methfessel, C., Sakmann, B., Noda, M. & Numa, S. Eur. Biophys. J. 14, 131–138 (1987).

    Google Scholar 

  19. Tanabe, T. et al. Nature 328, 313–318 (1987).

    Article  ADS  CAS  Google Scholar 

  20. Angelides, K. J., Velasquez, J., Thompson, C. & Barnes, E. M. Adv. biochem. Pharmac. (in the press).

  21. Drenckhahn, D. & Bennett, V. Eur. J. Cell Biol. 43, 479–486 (1987).

    CAS  PubMed  Google Scholar 

  22. Nelson, W. J. & Veshnock, P. J. J. Cell Biol. 104, 1527–1537 (1987).

    Article  CAS  Google Scholar 

  23. Peterson, G. L. Analyt. Biochem. 83, 346–356 (1977).

    Article  CAS  Google Scholar 

  24. Levinson, S. R., Curatalo, C. J., Reed, J. K. & Raftery, M. Analyt. Biochem. 99, 72–76 (1979).

    Article  CAS  Google Scholar 

  25. Merril, C. R., Dunau, M. L. & Goldman, D., Analyt. Biochem. 110, 201–207 (1981).

    Article  CAS  Google Scholar 

  26. Reiderer, B. M., Zagon, I. S. & Goodman, S. R. J. Cell Biol. 102, 2088–2097 (1986).

    Article  Google Scholar 

  27. Nelson, W. J. & Lazarides, E. Cell 39, 309–320 (1984).

    Article  CAS  Google Scholar 

  28. Staufenbiel & Lazarides, E. Proc. natn. Acad. Sci., U.S.A. 83, 318–322 (1986).

    Article  ADS  Google Scholar 

  29. Hall, T. & Bennett, V. J. biol. Chem. 262, 10537–10545 (1987).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srinivasan, Y., Elmer, L., Davis, J. et al. Ankyrin and spectrin associate with voltage-dependent sodium channels in brain. Nature 333, 177–180 (1988). https://doi.org/10.1038/333177a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/333177a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing