Abstract
Analysis of a series of mutants of an Escherichia coli alanine transfer RNA shows that substitution of a single G-U base pair in the acceptor helix eliminates aminoacylation with alanine in vivo and in vitro. Introduction of that base pair into the analogous position of a cysteine and a phenylalanine transfer RNA confers upon each the ability to be aminoacylated with alanine. Thus, as little as a single base pair can direct an amino acid to a specific transfer RNA.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
A naturally occurring mini-alanyl-tRNA synthetase
Communications Biology Open Access 23 March 2023
-
Relaxed sequence constraints favor mutational freedom in idiosyncratic metazoan mitochondrial tRNAs
Nature Communications Open Access 20 February 2020
-
Polymorphism of mitochondrial tRNA genes associated with the number of pigs born alive
Journal of Animal Science and Biotechnology Open Access 26 November 2018
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout
References
Schimmel, P. R. & Soll, D. A. Rev. Biochem. 48, 601–648 (1979).
Kisselev, L. Prog. Nucleic Acid Res. molec. Biol. 32, 237–266 (1985).
Schimmel, P. A. Ren. Biochem. 56, 125–158 (1987).
Knollton, R. G., Soll, L. & Yarus, M. J. molec. Biol. 139, 705–720 (1980).
Schulman, L. H. & Pelka, H. Proc. natn. Acad. Sci. U.S.A. 80, 6755–6759 (1983).
Samson, J. & Uhlenbeck, O. C. Proc. natn. Acad. Sci U.S.A. 85, 1033–1037 (1988).
Normanly, J., Odgen, R. C., Horvath, S. J. & Abelson, J. Nature 321, 213–219 (1986).
Jasin, M., Regan, L. & Schimmel, P. Nature 306, 441–447 (1983).
Jasin, M., Regan, L. & Schimmel, P. Cell 36, 1089–1095 (1984).
Regan, L., Bowie, J. & Schimmel, P. Science 235, 1651–1653 (1987).
Normanly, J., Masson, J.-M., Kleina, L., Abelson, J. & Miller, J. H. Proc. natn. Acad. Sci. U.S.A. 83, 6548–6552 (1986).
Masson, J. M. & Miller, J. H. Gene 47, 179–183 (1986).
Nakamura, K. & Inouye, M. Cell 18, 1109–1117 (1979).
Mims, B. H., Prather, N. E. & Murgola, E. J. J. Bact. 162, 837–839 (1985).
Raftery, L. A., Yarus, M. EMBO J. 6, 1499–1506 (1987).
Rich, A. & Schimmel, P. R. Nucleic Acids Res. 4, 1649–1665 (1977).
Crothers, D. M., Seno, T. & Soll, D. G. Proc. natn. Acad. Sci. U.S.A. 69, 3063–3067 (1972).
Murgola, E. J. & Hijazi, K. A. Molec. gen. Genet. 191, 132–137 (1983).
Sprinzl, M., Hartmann, T., Meissner, F., Moll, H. & Vorderwulbecke, T. Nucleic Acids Res. 15, r53–r188 (1987).
Murgola, E. J. A. Rev. Genet. 19, 57–80 (1985).
Mosteller, R. D., Goldstein, R. V. & Nishimoto, K. R. J. biol. Chem. 252, 4527–4532 (1977).
Yanofsky, C. & Crawford, I. P. Enzymes 7, 1–31 (1972).
Baccanari, D., Philips, A., Smith, S., Sinski, D. & Burchall, J. Biochemistry 14, 5267–5273 (1975).
Seong, B. L. & RajBhandary, U. L. Proc. natn. Acad. Sci. U.S.A. 84, 334–338 (1987).
Jasin, M., Regan, L. & Schimmel, P. J. biol. Chem. 260, 2226–2230 (1985).
Hooper, M. L., Russell, R. L. & Smith, J. D. FEBS Lett. 22, 149–155 (1972).
Shimura, Y. et al. FEBS Lett. 22, 144–148 (1972).
Smith, J. D. & Celis, J. E. Nature new Biol. 243, 66–71 (1973).
Celis, J. E., Hooper, M. L. & Smith, J. D. Nature new Biol. 244, 261–264 (1973).
Ghysen, A. & Celis, J. E. J. molec. Biol. 83, 333–351 (1974).
Inokuchi, H., Celis, J. E. & Smith, J. D. J. molec. Biol. 85, 187–192 (1974).
Yaniv, M., Folk, W. R., Berg, P. & Soll, L. J. molec. Biol. 86, 245–260 (1974).
Schulman, L. H. & Pelka, H. Biochemistry 24, 7309–7314 (1985).
Dietrich, A., Kern, D., Bonnet, J., Giege, R. & Ebel, J.-P. Eur. J. Biochem. 70, 147–158 (1976).
Schreier, A. A. & Schimmel, P. Biochemistry 11, 1582–1589 (1972).
Williams, R. J., Nage, W., Roe, B. & Dudock, B. Biochem. biophys. Res. Commun. 60, 1215–1221 (1974).
Lund, E. & Dahlberg, J. E. Cell 11, 247–262 (1977).
Young, R. A., Macklis, R. & Steitz, J. A. J. biol. Chem. 254, 3264–3271 (1979).
McClain, W. H. & Nicholas, H. B. Jr J. molec. Biol. 194, 635–642 (1987).
Prather, N. E., Murgola, E. J. & Mims, B. H. J. molec. Biol. 172, 177–184 (1984).
Crick, F. H. C. J. molec. Biol. 19, 548–555 (1966).
Kim, S-H. et al. Science 185, 435–440 (1974).
Robertus, J. D. et al. Nature 250, 546–551 (1974).
Ladner, J. E. et al. Proc. natn. Acad. Sci. U.S.A. 72, 4414–4418 (1975).
Quigley, G. J. & Rich, A. Science 194, 796–806 (1976).
Dente, L., Cesareni, G. & Cortese, R. Nucleic Acids Res. 11, 1645–1655 (1983).
Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci U.S.A 74, 5463–5467 (1977).
Chang, A. C. Y. & Cohen, S. N. J. Bact. 134, 1141–1156 (1978).
Maniatis, T., Fritsch, E. F. & Sambrook, J. in Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, New York, 1982).
Bush, B. L., Jones, T. A., Pfiugrath, J. W. & Saper, M. A. in PS300 FRODO-Molecular Graphics Program For The PS300 (ed. Sack, J. S.) (PS300 FRODO Version 6.4, 1987).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Hou, YM., Schimmel, P. A simple structural feature is a major determinant of the identity of a transfer RNA. Nature 333, 140–145 (1988). https://doi.org/10.1038/333140a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/333140a0
This article is cited by
-
A naturally occurring mini-alanyl-tRNA synthetase
Communications Biology (2023)
-
Stem Region of tRNA Genes Favors Transition Substitution Towards Keto Bases in Bacteria
Journal of Molecular Evolution (2022)
-
Structural Computational Analysis of the Natural History of Class I aminoacyl-tRNA Synthetases Suggests their Role in Establishing the Genetic Code
Journal of Molecular Evolution (2021)
-
Relaxed sequence constraints favor mutational freedom in idiosyncratic metazoan mitochondrial tRNAs
Nature Communications (2020)
-
G:U-Independent RNA Minihelix Aminoacylation by Nanoarchaeum equitans Alanyl-tRNA Synthetase: An Insight into the Evolution of Aminoacyl-tRNA Synthetases
Journal of Molecular Evolution (2020)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.