A vaccine candidate from the sexual stage of human malaria that contains EGF-like domains

Abstract

Malaria vaccines are being developed against different stages in the parasite's life cycle1, each increasing the opportunity to control malaria in its diverse settings. Sporozoite vaccines are designed to prevent mosquito-induced infection2; first generation recombinant or synthetic peptide vaccines have been tested in humans3,4. Asexual erythrocytic stage vaccines, developed to prevent or reduce the severity of disease, have been tested in animals1,5 and in humans6. A third strategy is to produce sexual stage vaccines that would induce antibodies which would prevent infection of mosquitoes when ingested in a bloodmeal containing sexual stage parasites1. Although not directly protective, the sexual stage vaccine combined with a sporozoite or asexual stage vaccine (protective component) could prolong the useful life of the protective component by reducing transmission of resistant vaccine-induced mutants. In areas of low endemnicity, the sexual stage vaccine could reduce transmission below the critical threshold required to maintain the infected population, thereby assisting in the control or eradication of malaria. Transmission of Plasmodium falciparum, the major human malaria, can be blocked by monoclonal antibodies against three sexual stage-specific antigens7–9. We have cloned the gene encoding the surface protein of relative molecular mass Mr 25,000 (25K; Pfs25), expressed on zygotes and ookinetes of P. falciparum. The deduced amino-acid sequence consists of a signal sequence, a hydrophobic C-terminus, and four tandem epidermal growth factor EGF-like domains10–12.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Miller, L. H. et al. Science 234, 1349–1356 (1986).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Zavala, F. et al. J. exp. Med. 166, 1591–1596 (1987).

    CAS  Article  Google Scholar 

  3. 3

    Ballou, W. R. et al. Lancet 8545, 1277–1281 (1987).

    Article  Google Scholar 

  4. 4

    Herrington, D. A. et al. Nature 328, 257–259 (1987).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Patarroyo, M. E. et al. Nature 328, 629–632 (1987).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Patarroyo, M. E. et al. Nature 332, 158–161 (1988).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Rener, J., Graves, P. M., Carter, R., Williams, J. L. & Burkot, J. R. J. exp. Med. 158, 976–981 (1983).

    CAS  Article  Google Scholar 

  8. 8

    Vermeulen, A. N. et al. J. exp. Med. 162, 1460–1476 (1985).

    CAS  Article  Google Scholar 

  9. 9

    Quakyi, I. et al. J. Immunol. 139, 4213–4217 (1987).

    CAS  PubMed  Google Scholar 

  10. 10

    Gray, A. Dull, T. J. & Ullrich, A. Nature 303, 722–725 (1983).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Scott, J. et al. Science 221, 236–240 (1983).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Doolittle, R. F., Feng, D. F. & Johnson, M. S. Nature 307, 558–560 (1984).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Walliker, D. et al. Science 231, 1661–1666 (1987).

    ADS  Article  Google Scholar 

  14. 14

    Graves, P. M., Carter, R., Keystone, J. F. & Seely Jr, D. C. Am. J. trop. Med. Hyg. 33, 212–219 (1984).

    CAS  Article  Google Scholar 

  15. 15

    Vermuelen, A. N. et al. Molec. biochem. Parasitol. 20, 155–163 (1986).

    Article  Google Scholar 

  16. 16

    Low, M. G. & Saltiel, A. R. Science 239, 268–275 (1988).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Sudhof, T. C., Goldstein, J. L., Brown, M. S. & Russell, D. W. Science 228, 815–822 (1985).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Wharton, K. A., Johansen, K. M., Xu, T. & Artavanis-Tsakonas, S. Cell 43, 567–581 (1985).

    CAS  Article  Google Scholar 

  19. 19

    Greenwald, I. Cell 43, 583–590 (1985).

    CAS  Article  Google Scholar 

  20. 20

    Jahnke, U., Fisher, E. H. & Alvrod, E. C. Science 229, 282–284 (1985).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Fujinami, R. S. & Oldstone, M. B. A. Science 230, 1043–1045 (1985).

    ADS  CAS  Article  Google Scholar 

  22. 22

    Greenwood, B. M. et al. Trans. R. Soc. trop. Med. Hyg. 81, 478–486 (1987).

    CAS  Article  Google Scholar 

  23. 23

    Chen, E. Y. & Seeburg, P. H. DNA 4, 165–170 (1985).

    CAS  Article  Google Scholar 

  24. 24

    Maniatis, T., Fritsch, E. F. & Sambrook, J. Molecular Cloning: A Laboratory Manual 194–195 (Cold Spring Harbor Laboratory, New York, 1982).

    Google Scholar 

  25. 25

    Kaslow, D. C. et al. Genomics 1, 19–28 (1987).

    CAS  Article  Google Scholar 

  26. 26

    Buller, R. M. L., Chakrabarti, S., Moss, B. & Fredrikson, T. Virology (in the press).

  27. 27

    Buller, R. M. L., Chakrabarti, S., Cooper, J. A., Ewardczik, D. R. & Moss, B. J. Virol. 62, 866–874 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kaslow, D., Quakyi, I., Syin, C. et al. A vaccine candidate from the sexual stage of human malaria that contains EGF-like domains. Nature 333, 74–76 (1988). https://doi.org/10.1038/333074a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing