Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Liquid-like movements in crystalline insulin


Diffuse X-ray scattering from protein crystals provides information about molecular flexibility and packing irregularities1–4. Here we analyse diffraction patterns from insulin crystals that show two types of scattering related to disorder: very diffuse, liquid-like diffraction, and haloes around the Bragg reflections. The haloes are due to coupled displacements of neighbouring molecules in the lattice, and the very diffuse scattering results from variations in atomic positions that are only locally correlated within each molecule. The measured intensity was digitally separated into three components: the Bragg reflections and associated haloes; the water and Compton scattering; and the scattering attributed to internal protein movements. We extend methods used to analyse disorder in membrane structures5–7 to simulate the diffuse scattering from crystalline insulin in terms of (1) the Patterson (autocorrelation) function of the ideal, ordered crystal structure, (2) the root-mean-square (r.m.s.) amplitude of the atomic movements, and (3) the mean distance over which these displacements are coupled. Move-ments of the atoms within the molecules, with r.m.s. amplitudes of 0.4–0.45 Å, appear to be coupled over a range of ~6 Å, as in a liquid. These locally coupled movements account for most of the disorder in the crystal. Also, the protein molecules, as a whole, jiggle in the lattice with r.m.s. amplitudes of ~0.25 Å that appear to be significantly correlated only between nearest neighbours.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. Phillips, G. N., Fillers, J. P. & Cohen, C. Biophys. J. 32, 485–502 (1980).

    ADS  CAS  Article  Google Scholar 

  2. Boylan D. & Phillips, G. N. Biophys. J. 49, 76–78 (1986).

    CAS  Article  Google Scholar 

  3. Doucet, J. & Benoit, J. P. Nature 325, 643–646 (1987).

    ADS  CAS  Article  Google Scholar 

  4. Artymiuk, P. Nature 325, 575–576 (1987).

    ADS  CAS  Article  Google Scholar 

  5. Li, J. thesis, Harvard Univ. (1978).

  6. Maulik, S., Caspar, D. L. D., Phillips, W. C. & Goodenough, D. A. Biophys. J. 49, 342a (1986).

    Google Scholar 

  7. Maulik, S. thesis, Brandeis Univ. (1986).

  8. Caspar, D. L. D. & Holmes, K. C. J. Molec. Biol. 46, 99–133 (1969).

    CAS  Article  Google Scholar 

  9. Debye, P. ann. d. Physik 43, 49–95 (1914); The Collected Papers of Peter J. W. Debye (Interscience, New York 1954).

    Google Scholar 

  10. Waller, I. Z. Phys. 17, 398–408 (1923).

    ADS  CAS  Article  Google Scholar 

  11. James, R. W. The Optical Principles of the Diffraction of X-rays (Cornell University Press, 1965).

    Google Scholar 

  12. Amoros, J. L. & Amoros, M. Molecular Crystals: Their Transforms and Diffuse Scattering. (Wiley New York, 1968).

    MATH  Google Scholar 

  13. Adams, M. J. et al. Nature 224, 491–495 (1969).

    ADS  CAS  Article  Google Scholar 

  14. Compton, A. H. & Allison, S. K. X-rays in Theory and Experiment second edn (Van Nostrand, New York 1935).

    Google Scholar 

  15. Salunke, D. M., Veerapandian, B., Kodandapani, R. & Vijayan, M. Acta cryslallogr. B41, 431–436 (1985).

    CAS  Article  Google Scholar 

  16. Narten, A. H. Oak Ridge National Laboratory Report No. 4578 (1970).

  17. Sakabe, N., Sakabe, K. & Sasaki, K. Proc. int. Symp. Biomolec. Struct. Interactions, Suppl. J. Biosci. Vol. 8 numbers 1 and 2, 45–55 (1985).

    CAS  Google Scholar 

  18. Wonacott, A. J., Brook, P. Imperial College Rotation Film Scanning Package (1984).

  19. Bernstein, T. F. et al. J. Molec. Biol. 112, 535–42 (1977).

    CAS  Article  Google Scholar 

  20. Dodson, E. J., Dodson, G. G. Hodgkin, D. C. & Reynolds C. D. Can. J. Biochem. 57, 469–479 (1979).

    CAS  Article  Google Scholar 

  21. Murray, C. A. & Van Winkle, D. H. Phys. Rev. Lett. 58, 1200–1203 (1987).

    ADS  CAS  Article  Google Scholar 

  22. Debye P., Ann. d. Physik 39, 789–839 (1912).

    ADS  CAS  Article  Google Scholar 

  23. Morozov, V. N. & Morozova, T. Y. A. J. theor. Biol. 121, 73–88 (1986).

    CAS  Article  Google Scholar 

  24. Kalata, K. Meth. Enzym. 114, 486–510 (1985).

    Article  Google Scholar 

  25. Karplus, M. & McCammon, J. A. CRC crit. Rev. Biochem 9, 293–349 (1981).

    CAS  Article  Google Scholar 

  26. McCammon, J. A., Gelin, B. R. & Karplus, M. Nature 267, 585–590 (1977).

    ADS  CAS  Article  Google Scholar 

  27. Levitt, M., Sander, C. & Stern, P. J. molec. Biol. 181, 423–447 (1985).

    CAS  Article  Google Scholar 

  28. Ramanadham, M., Sieker, L. C. Jensen, L. H. & Birknes, B. J. Acta Crystallogr. A37 C-33 (1981).

  29. Sternberg, M. J., Grace, O. E. P. & Phillips, D. C. J. molec. Biol. 130, 231–253 (1979).

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Caspar, D., Clarage, J., Salunke, D. et al. Liquid-like movements in crystalline insulin. Nature 332, 659–662 (1988).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing