Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Response of a general circulation model to a prescribed Antarctic ozone hole

Abstract

Model simulation of the 'ozone hole' observed in Austral springtime indicates that the ozone depletion leads to a temperature decrease in the lower Antarctic stratosphere of 5 K in mid-October. The temporal evolution of the thermal balance in the control shows that weak upward motion occurs by mid-September and shows the temperature tendency is dominated by the net radiative heating through late September to November. When the ozone hole is imposed, downward motion persists through September to mid-October and the final warming in November is postponed.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Farman, J. C. et al. Nature 315, 207–210 (1985).

    ADS  CAS  Article  Google Scholar 

  2. Solomon, S. et al. Nature 321, 755–758 (1986).

    ADS  CAS  Article  Google Scholar 

  3. Crutzen, P. J. & Arnold, F. Nature 324, 651 (1986).

    ADS  CAS  Article  Google Scholar 

  4. Tung, K. K. Geophys. Res. Lett. 13, 1308–1311 (1986).

    ADS  CAS  Article  Google Scholar 

  5. Tung, K. K. et al. Nature 333, 811–814 (1986).

    ADS  Article  Google Scholar 

  6. Mahlman, J. D. & Fels, S. B. Geophy. Res. Lett. 13, 1316–1319 (1986).

    ADS  CAS  Article  Google Scholar 

  7. Shine, K. P. Geophys. Res. Lett. 13, 1331–1334 (1986).

    ADS  CAS  Article  Google Scholar 

  8. Boville, B. A. & Randel, W. J. J. atmos. Sci. 43, 3015–3034 (1986).

    ADS  Article  Google Scholar 

  9. Stolarski, R. S. & Schoeberl, M. R. Geophys. Res. Lett. 13, 1210–1212 (1986).

    ADS  CAS  Article  Google Scholar 

  10. Farrara, J. D. & Mechoso, C. R. Geophys. Res. Lett. 13, 1232–1235 (1986).

    ADS  Article  Google Scholar 

  11. Newman, P. A. & Schoeberl, M. R. Geophys. Res. Lett. 13, 1206–1209 (1986).

    ADS  CAS  Article  Google Scholar 

  12. Chubachi, S. Geophyx. Res. Lett. 13, 1221–1223 (1986).

    ADS  CAS  Article  Google Scholar 

  13. Rosenfield, J. E. & Schoeberl, M. R. Geophys. Res. Lett. 13, 1339–1342 (1986).

    ADS  CAS  Article  Google Scholar 

  14. Newman, P. A. Geophys. Res. Lett. 13, 1128–1231 (1986).

    Google Scholar 

  15. Newman, P. A. & Randel, W. J. J. geophys. Res. (submitted 1987).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kiehl, J., Boville, B. & Briegleb, B. Response of a general circulation model to a prescribed Antarctic ozone hole. Nature 332, 501–504 (1988). https://doi.org/10.1038/332501a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/332501a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing