Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Major role of bacteria in biogeochemical fluxes in the ocean's interior

Abstract

Spatial and temporal patterns in the flux of sinking organic matter are central to the understanding of elemental dynamics and food-web energetics in the global ocean1–3. Heterotrophic bacteria have been shown to play a part in the decomposition of large, rapidly sinking organic particles within and below the euphotic zone4–8. These previous studies suggest that decomposition by attached bacteria can explain only a trivial fraction of the observed decrease in the flux of organic matter with increasing depth. We report here that free-living bacteria, rather than the particle-feeding zooplankton, are the principal mediators of particle decomposition in the central north Pacific gyre and the eutrophic Santa Monica basin. We suggest that bacterial growth in the mesopelagial gives rise to the large-scale production of fine (0.3–0.6 μm), non-sinking particles at the expense of large, rapidly sinking particles. Our results have implications for models of biogeochemical dynamics of organic particles and surface-reactive materials such as radionu-clides in the ocean's interior3,9.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Jickells, T. D. et al. Deep Sea Res. 31, 1169–1178 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Fowler, S. W. & Knauer, G. A. Prog. Oceanogr. 16, 147–194 (1986).

    Article  ADS  Google Scholar 

  3. Bacon, M. P. et al. Deep Sea Res. 32, 273–286 (1985).

    Article  ADS  CAS  Google Scholar 

  4. Ducklow, H. W. et al. Continent. Shelf Res. 4, 445–464 (1985).

    Article  ADS  Google Scholar 

  5. Azam, F. et al. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).

    Article  ADS  Google Scholar 

  6. Alldredge, A. L. & Youngbluth, M. J. Deep Sea Res. 32, 1445–1456 (1985).

    Article  ADS  Google Scholar 

  7. Jacobsen, T. R. & Azam, F. Bull. mar. Sci. 35, 495–502 (1984).

    Google Scholar 

  8. Azam, F. & Cho, B. C. in Ecology of Microbial Communities (eds Fletcher, M. et al.) 261–281 (Cambridge Univ. Press, New York, 1987).

    Google Scholar 

  9. Buesseler, K. O. et al. Nature 329, 825–828 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Fuhrman, J. A. & Azam, F. Mar. Biol. 66, 109–120 (1982).

    Article  Google Scholar 

  11. Lee, S. & Fuhrman, J. A. Appl. envir. Microbiol. 53, 1298–1303 (1987).

    CAS  Google Scholar 

  12. Gordon, D. C. Jr Deep Sea Res. 18, 1127–1134 (1971).

    CAS  Google Scholar 

  13. Williams, P. M. et al. Oceanoliga Acta 3, 471–476 (1980).

    Google Scholar 

  14. Rosso, A. L. & Azam, F. Mar. Ecol. Prog. Ser. 41, 231–240 (1987).

    Article  ADS  CAS  Google Scholar 

  15. Hodson, R. E. et al. Mar. Biol. 64, 43–51 (1981).

    Article  CAS  Google Scholar 

  16. Betzer, P. R. et al. Deep Sea Res. 31, 1–11 (1984).

    Article  ADS  Google Scholar 

  17. Dagg, M. J. & Walser, W. D. Jr Limnol. Oceanogr. 31, 1066–1071 (1986).

    Article  ADS  CAS  Google Scholar 

  18. Linley, E. A. S. & Newell, R. C. Bull. mar. Sci. 35, 409–439 (1984).

    ADS  Google Scholar 

  19. Andersson, A. et al. Mar. Ecol. Prog. Ser. 23, 99–106 (1985).

    Article  ADS  CAS  Google Scholar 

  20. Eppley, R. W. & Peterson, B. J. Nature 282, 677–680 (1979).

    Article  ADS  Google Scholar 

  21. Andersen, P. & Fenchel, T. Limnol. Oceanogr. 30, 198–202 (1985).

    Article  ADS  Google Scholar 

  22. Davis, P. G. et al. Mar. Ecol. Prog. Ser. 21, 15–26 (1985).

    Article  ADS  Google Scholar 

  23. Sorokin, Yu. I. et al. Mar. Ecol. Prog. Ser. 24, 27–41 (1985).

    Article  ADS  Google Scholar 

  24. Lai, D. Earth planet. Sci. Lett. 49, 520–527 (1980).

    Article  ADS  Google Scholar 

  25. Porter, K. G. & Feig, Y. S. Limnol. Oceanogr. 10, 173–184 (1980).

    Google Scholar 

  26. Hobbie, J. E. et al. Appl. environ. Microbiol. 33, 1225–1228 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Sharp, J. H. Limnol. Oceanogr. 19, 984–989 (1974).

    Article  ADS  CAS  Google Scholar 

  28. Yayanos, A. A. Proc. natn. Acad. Sci. U.S.A. 83, 9542–9546 (1986).

    Article  ADS  CAS  Google Scholar 

  29. Riemann, B. et al. Limnol. Oceanogr. 32, 471–476 (1987).

    Article  ADS  CAS  Google Scholar 

  30. Marra, J. & Heineman, K. R. Deep Sea Res. 34, 1821–1829 (1987).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, B., Azam, F. Major role of bacteria in biogeochemical fluxes in the ocean's interior. Nature 332, 441–443 (1988). https://doi.org/10.1038/332441a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/332441a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing