
© 1988 Nature  Publishing Group

_11_6 _____________________________________ NEVVSANDVI8NS-------------------NA_T_u_R_E_v_o_L_.3_3_2_to_M_A_R_C_H_I_9s_s 

itself: its information content is incom
pressible. 

A sequence of digits 0 and 1 can be 
interpreted as the binary expansion of a 
real (non-integer) number, by inserting a 
'decimal point' (or rather, a 'binary 
point') in front. Thus the infinite repeat
ing sequence 010101 ... corresponds to the 
real number .010101... in binary; that is 
113. A real number is computable if its 
binary expansion can be the output of a 
computer program. It is a theorem - at 
first sight surprising, but true, and even 
easy- that 'almost all' real numbers are 
not computable. For example, Turing 
used an argument that goes back to Georg 
Cantor to prove the existence of at least 
one non-computable real number. 

The proof is based on the idea that all 
possible computer programs, each of 
which must be represented by a finite 
sequence of digits, can be listed in order. 
To do this, interpret the program's defin
ing sequence as a whole number, 
expressed in binary, and arrange these 
numbers in increasing numerical order. 
Now assign to each program in this list its 
output data, a real number expressed in 
binary. Run down the diagonal of this 
table of numbers, changing the nth digit in 
the nth number. The new diagonal is a 
number that is not on the list, which there
fore corresponds to the output of no com
puter program whatsoever. 

Turing machine 
Another of Turing's basic discoveries is 
that it is possible to construct a universal 
Turing machine - a computer program 
capable of simulating any other program. 
Consider the following 'halting' problem 
for a universal Turing machine: given a 
particular input, does the computation 
eventually stop or does it go on for ever? 
Using the above 'diagonal' argument, 
Turing showed that the halting problem is 
logically undecidable. 

Correspondingly, Chaitin defines a real 
number Q which can be thought of as the 
probability that a universal Turing mach
ine, given a random program, will eventu
ally halt. It is impossible to compute Q 

because its digits solve the halting prob
lem for the universal Turing machine. 
Chaitin shows that any formal system of 
axioms can yield only a finite number of 
(scattered) digits of Q. Thus Q is a ran
dom real number in the above sense: it has 
no compact computable description. 

The final step is to recast this circle of 
ideas in terms of whole numbers, rather 
than arbitrary real numbers. Chaitin does 
this using 'exponential diophantine' equa
tions. These are equations, to be solved in 
positive integers, that can be built up from 
the usual algebraic operations of sums, 
differences and products, together with 
exponentiation, x". 

Over the past two decades, logicians 
have solved a longstanding problem, 

showing that any computation can be en
coded in the set of solutions of some dio
phantine equation. There is a diophantine 
formula, for example, to generate the 
primes. An undecidable computation -
such as the halting problem for a universal 
Turing machine - leads to an undecid
able diophantine equation; that is, an 
equation in arithmetic for which there can 
be no proof that solutions exist, and no 
proof that they do not. 

Finally, the randomness. Chaitin's main 
theorem asserts that it is possible to con
struct a specific exponential diophantine 
equation, of the form L(n)=R(n), where 
L and R are functions that depend on a 
finite number of additional variables, with 
the following property. The equation 
has infinitely many whole-number solu
tions if and only if the nth digit of Q is 1. 
Because Q is random, the question 
'does L(n)=R(n) have infinitely many 
solutions?' has an answer which varies 
randomly as n takes the values 0,1,2,3, ... 
in turn. 

In the proof, Chaitin constructs an 
exponential diophantine equation in 
17,000 variables, about 900,000 symbols 
long. Instead of Turing's formulation of 
computation, he uses a version of the 
standard computer language Lisp. The 
practical and theoretical aspects of com
putation become almost inseparable in 
this work. 

For the foundations of mathematics, 
and even the philosophy of its application 
to science, this century has been one of 
shattered illusions. Cosy assumption after 
cosy assumption has exploded in mathe
maticians' faces. The assumption that the 
formal structure of arithmetic is precise 
and regular turns out to have been a time
bomb, and Chaitin has just pushed the 
detonator. His book ends with some 
speculations on a possible analogy with 
biological complexity. Resemblances to 
Deep Thought in Douglas Adams' The 
Hitchhiker's Guide to the Galaxy are 
strong, but presumably accidental. In the 
following quotation from Chaitin's book, 
the phrase 'oracle for the halting problem' 
boils down to 'complete specification of 
the number Q': "We have seen that Q is 
about as random, patternless, unpredict
able and incomprehensible as possible ... 
However, with computations in the limit, 
which is equivalent to having an oracle for 
the halting problem, Q seems quite 
understandable ... Biological evolution is 
the nearest thing to an infinite computa
tion in the limit that we will ever see: it is a 
computation with molecular components 
that has proceeded for 109 years in parallel 
over the entire surface of the earth ... Per
haps biological structures are simple and 
easy to understand only if one has an 
oracle for the halting problem." D 
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Daedalus 

Warm wind 
THE temperature of the atmosphere 
drops with increasing altitude. Its adia
batic lapse-rate of 6.5 oc km-1 is main
tained by its turbulence: rising air expands 
and cools while descending air is com
pressed and heated. Other gases have 
different adiabatic lapse-rates. The record 
is held by xenon, an atmosphere of which 
would establish a gradient of 63 oc km -1

• 

Daedalus plans to exploit this in a new 
wind-powered heating system. Imagine, 
he says, a flexible plastic bag rising a kilo
metre into the atmosphere, and filled with 
xenon. The turbulence and buffeting of 
the wind would soon stir the xenon into 
full convective equilibrium, when the 
bottom of the bag would be 63 oc hotter 
than the top. If the top were maintained at 
local atmospheric temperature by a 
suitable heat-exchanger, domestically 
useful heat at about 70 oc could be 
extracted from the bottom of the bag. 

This ingenious scheme extracts energy, 
not from the 'd. c.' component of the wind, 
but from its turbulent 'a.c.' component. 
At ground-level, especially near buildings 
or in regions of irregular topography, 
much of the wind's energy is gusty and 
fluctuating and unavailable to conven
tional wind-turbines. So the thermal wind
bag has great promise. 

There are two main problems. First, a 
flabby bag a kilometre high is rather an 
awkward object. Second, such a tall 
column of a dense gas like xenon would 
exert greater than atmospheric pressure at 
its base. This would hold the plastic bag 
taut, reducing its ability to flap and flex 
and stir the gas within. Thermal wind-bags 
only a hundred metres high would be 
more practical; they could then be 
anchored to buildings or lattice-towers, or 
even steep hillsides. If excess base
pressure is then still troublesome, 
Daedalus will replace his xenon by a 
mixture of argon and neon with the same 
density as the atmosphere, but an adia
batic lapse-rate about twice as great: 14 °C 
km- 1

• All this will reduce the temperature
rise at the bottom of the bag to only a few 
degrees, so Daedalus plans to multiply it 
up by regenerative heating. A counter
current heat-exchanger inside the bag 
will transfer most of the bottom heat 
straight up to the top again. The convec
tive process will therefore increase the 
temperature at the bottom still more, and 
this too will be returned to the top. With a 
sufficiently high recycle-ratio, any desired 
temperature could be attained at the 
bottom of the bag, though with a corres
ponding reduction of extracted power per 
effective cycle. Even so, the more the cold 
wind buffeted your house, the more heat it 
would unwittingly supply! David Jones 
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