Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Interaction of polyadenylate-binding protein with the eIF4G homologue PAIP enhances translation

Abstract

In the initiation of translation in eukaryotes, binding of the small ribosomal subunit to the messenger RNA results from recognition of the 5′ cap structure (m7GpppX) of the mRNA by the cap-binding complex eIF4F1. eIF4F is itself a three-subunit complex comprising the cap-binding protein eIF4E2, eIF4A, an ATP-dependent RNA helicase3, and eIF4G, which interacts with both eIF4A and eIF4E and enhances cap binding by eIF4E4. The mRNA 3′ polyadenylate tail and the associated poly(A)-binding protein (PABP) also regulate translational initiation5, probably by interacting with the 5′ end of the mRNA6,7. In yeast8,9 and plants10, PABP interacts with eIF4G8,9 but no such interaction has been reported in mammalian cells. Here, we describe a new human PABP-interacting protein, PAIP-1, whose sequence is similar to the central portion of eIF4G and which interacts with eIF4A. Overexpression of PAIP-1 in COS-7 cells stimulates translation, perhaps by providing a physical link between the mRNA termini.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of PAIP-1 and its homology with eIF4G.
Figure 2: Interaction of PAIP-1 with PABP.
Figure 3: PAIP-1 overexpression enhances translation.
Figure 4: Proposed models for the bridging of 5′ and 3′ mRNA ends in eukaryotes.

Similar content being viewed by others

References

  1. Merrick, W. C. & Hershey, J. W. B. in Translational Control (eds Hershey, J. W. B., Mathews, M. B. & Sonenberg, N.) 31–69 (Cold Spring Harbor Laboratory Press, New York, (1996)).

    Google Scholar 

  2. Sonenberg, N., Rupprecht, K. M., Hecht, S. M. & Shatkin, A. J. Eukaryotic mRNA cap binding protein: purification by affinity chromatography on sepharose-coupled m7GDP. Proc. Natl Acad. Sci. USA 76, 4345–4349 (1979).

    Article  ADS  CAS  Google Scholar 

  3. Rozen, F. et al. Bidirectional RNA helicase activity of eucaryotic translation initation factors 4A and 4F. Mol. Cell. Biol. 10, 1134–1144 (1990).

    Article  CAS  Google Scholar 

  4. Haghighat, A. & Sonenberg, N. eIF4G dramatically enhances the binding of eIF4E to the mRNA 5′-cap structure. J. Biol. Chem. 272, 21677–21680 (1997).

    Article  CAS  Google Scholar 

  5. Munroe, D. & Jacobson, A. mRNA poly(A) tail, a 3′ enhancer of translation initiation. Mol. Cell. Biol. 10, 3441–3455 (1990).

    Article  CAS  Google Scholar 

  6. Jacobson, A. in Translational Control (eds Hershey, J. W. B., Mathews, M. B. & Sonenberg, N.) 451–480 (Cold Spring Harbor Laboratory Press, New York, (1996)).

    Google Scholar 

  7. Sachs, A. B., Sarnow, P. & Hentze, M. W. Starting at the beginning, middle, and end: translation initiation in eukaryotes. Cell 89, 831–838 (1997).

    Article  CAS  Google Scholar 

  8. Tarun, S. J. J & Sachs, A. B. Association of the yeast poly(A) tail binding protein with translation initiation factor eIF-4G. EMBO J. 15, 7168–7177 (1996).

    Article  CAS  Google Scholar 

  9. Tarun, S. Z., Wells, S. E., Deardorff, J. A. & Sachs, A. B. Translation initiation factor eIF4G mediates in vitro poly(A) tail-dependent translation. Proc. Natl Acad. Sci. USA 94, 9046–9051 (1997).

    Article  ADS  CAS  Google Scholar 

  10. Le, H. et al. Translation initiation factors factors eIF-iso4G and eIF4B interact with the poly(A)-binding protein and increase its RNA binding activity. J. Biol. Chem. 272, 16247–16255 (1997).

    Article  CAS  Google Scholar 

  11. Blanar, M. A. & Rutter, W. J. Interaction cloning: identification of a helix-loop-helix zipper protein that interacts with c-Fos. Science 256, 1014–1018 (1992).

    Article  ADS  CAS  Google Scholar 

  12. Yan, R., Rychlik, W., Etchison, D. & Rhoads, R. E. Amino acid sequence of the human protein synthesis initiation factor eIF-4γ. J. Biol. Chem. 267, 23226–23231 (1992).

    CAS  PubMed  Google Scholar 

  13. Imataka, H. & Sonenberg, N. Human eukaryotic translation initiation factor 4G possesses two separate and independent binding sites for eIF4A. Mol. Cell. Biol. 17, 6940–6947 (1997).

    Article  CAS  Google Scholar 

  14. Lamphear, B. J., Kirchweger, R., Skern, T. & Rhoads, R. E. Mapping of functional domains in eIF4γ with picornaviral proteases. Implications for cap-dependent and cap-independent translational initiation. J. Biol. Chem. 270, 21975–21983 (1995).

    Article  CAS  Google Scholar 

  15. Mader, S., Lee, H., Pause, A. & Sonenberg, N. The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4γ and the translational repressors 4E-binding proteins. Mol. Cell. Biol. 15, 4990–4997 (1995).

    Article  CAS  Google Scholar 

  16. Imataka, H., Olsen, H. S. & Sonenberg, N. Anew translational regulator with homology to eukaryotic translation initiation factor 4G. EMBO J. 16, 817–825 (1997).

    Article  CAS  Google Scholar 

  17. Levy-Strumpf, N., Deiss, L. P., Berissi, H. & Kimchi, A. DAP-5, a novel homolog of eukaryotic translation initiation factor 4G isolated as a putative modulator of gamma interferon-induced programmed cell death. Mol. Cell. Biol. 17, 1615–1625 (1997).

    Article  CAS  Google Scholar 

  18. Yamanaka, S., Poksay, K. S., Arnold, K. S. & Innerarity, T. L. Anovel translational repressor mRNA is edited extensively in livers containing tumors caused by the transgene expression of the apoB mRNA-editing enzyme. Genes Dev. 11, 321–333 (1997).

    Article  CAS  Google Scholar 

  19. Pause, A., Methot, N., Svitkin, Y., Merrick, W. C. & Sonenberg, N. Dominant negative mutants of mammalian translation initiation factor eIF-4A define a critical role for eIF-4F in cap-dependent and cap-independent initiation of translation. EMBO J. 13, 1205–1215 (1994).

    Article  CAS  Google Scholar 

  20. Asselbergs, F. A. M., Peters, W., van Venrooij, W. J. & Bloemendal, H. Diminished sensitivity of re-initiation of translation to inhibition by cap analogues in reticulocyte lysates. Eur. J. Biochem. 88, 483–488 (1978).

    Article  CAS  Google Scholar 

  21. Tarun, S. J & Sachs, A. B. Acommon function for mRNA 5′ and 3′ ends in translation initiation in yeast. Genes Dev. 9, 2997–3007 (1995).

    Article  CAS  Google Scholar 

  22. Hentze, M. W. eIF4G: a multipurpose ribosome adaptor? Science 275, 500–501 (1997).

    Article  CAS  Google Scholar 

  23. Gradi, A. et al. Anovel functional human eukaryotic translation initiation factor 4G. Mol. Cell. Biol. 18, 334–342 (1998).

    Article  CAS  Google Scholar 

  24. Yang, H., Duckett, C. S. & Lindsten, T. iPABP, an inducible poly(A)-binding protein detected in activated human T cells. Mol. Cell. Biol. 15, 6770–6776 (1995).

    Article  CAS  Google Scholar 

  25. Grange, T., de Sa, C. M., Oddos, J. & Pictet, R. Human mRNA polyadenylate binding protein: evolutionary conservation of a nucleic acid binding motif. Nucleic Acids Res. 15, 4771–4778 (1987).

    Article  CAS  Google Scholar 

  26. Haghighat, A. et al. The eIF4G-eIF4E complex is the target for direct cleavage by the rhinovirus 2A proteinase. J. Virol. 70, 8444–8450 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Donzé, O., Damay, P. & Spahr, P. F. The first and third uORFs in RSV leader RNA are efficiently translated: implications for translational regulation and viral RNA packaging. Nucleic Acids Res. 23, 861–868 (1995).

    Article  Google Scholar 

  28. Gorlach, M., Burd, C. G. & Dreyfuss, G. The mRNA poly(A)-binding protein: localization, abundance, and RNA-binding specificity. Exp. Cell Res. 211, 400–407 (1994).

    Article  CAS  Google Scholar 

  29. Sachs, A. B. & Buratowski, S. Common themes in translational and transcriptional regulation. Trends Biochem. Sci. 22, 189–192 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Dreyfuss and H. Traschel for monoclonal antibodies against human PABP and eIF4A, respectively; J. Bag for human PABP cDNA; M. Park for the cDNA library; Y. Svitkin for HeLa extracts; O. Donzé for luciferase plasmid; and G. Cosentino, A.-C. Gingras, B. Raught and K.Khaleghpour for comments on the manuscript. This work was supported by a grant from the MRC of Canada to N.S. A.W.B.C. was supported by a joint training award from National Health Research and Development-MRC of Canada. N.S. is a distinguished scientist of the MRC of Canada and a Howard Hughes international scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nahum Sonenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Craig, A., Haghighat, A., Yu, A. et al. Interaction of polyadenylate-binding protein with the eIF4G homologue PAIP enhances translation. Nature 392, 520–523 (1998). https://doi.org/10.1038/33198

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/33198

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing