Letter | Published:

Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences

Nature volume 331, pages 184186 (14 January 1988) | Download Citation

Subjects

Abstract

The origin of the eukaryotic nucleus is difficult to reconstruct. Eukaryotic organelles (chloroplast, mitochondrion) are eii bacterial1,2 endosymbionts3,but the source of nuclear genes has been obscured by multiple nucleotide substitutions. Using evolutionary parsimony4, a newly developed rate-invariant treeing algorithm, the eukaryotic ribosomal rRNA genes are shown to have evolved from the eocytes5, a group of extremely thermophilic, sulphur-metabolizing, anucleate cells. The deepest bifurcation yet found separates the reconstructed tree into two taxonomic divisions. These are a proto-eukaryotic group (karyotes) and an essentially bacterial one (parkaryotes). Within the precision of the rooting procedure, the tree is not consistent with either the prokaryotic–eukaryotic or the archaebacterial–eubacterial–eukaryotic groupings. It implies that the last common ancestor of extant life, and the early ancestors of eukaryotes, probably lacked nuclei, metabolized sulphur and lived at near-boiling temperatures.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Nature 238, 739–772 (1980).

  2. 2.

    , & Proc. natn. Acad. Sci. U.S.A. 81, 493–497 (1984).

  3. 3.

    Symbiosis in Cell Evolution (Freeman, San Francisco, 1981).

  4. 4.

    Molec. biol. Evol. 4, 167 (1987).

  5. 5.

    , , & Proc. natn. Acad. Sci. U.S.A. 81, 3786–3790 (1984).

  6. 6.

    Syst. Zool. 27, 401–410 (1978).

  7. 7.

    , , & Symp. Quant. Biol. 52 (in the press).

  8. 8.

    , , & Adv. microbiol. Ecol. 1–55 (1986).

  9. 9.

    et al. in Endocytobiology III (eds J. J. Lee & J. F. Frederick) (New York Academy of Sciences, 1987).

  10. 10.

    Nature 319, 626 (1986).

  11. 11.

    & Cladistics 1(3), 266–278 (1981).

  12. 12.

    & Molec. biol. Evol. 3, 1–18 (1986).

  13. 13.

    J. molec. Evol. 18, 30–37 (1981).

  14. 14.

    Am. Nat. 111, 223–257 (1977).

  15. 15.

    , , & J. molec. Evol. 18, 225–239 (1982).

  16. 16.

    & Phylogenetic Patterns and the Evolutionary Process (Columbia University Press, New York, 1980).

  17. 17.

    et al. Science 209, 457–463 (1980).

  18. 18.

    , , & System. Appl. Microbiol. 7, 49–57 (1986).

  19. 19.

    , & Curr. Top. Microbiol. Immun. 33, 1–18 (1985).

  20. 20.

    Phylogenetics (Wiley, New York, 1981).

  21. 21.

    Principles of Systematic Zoology (McGraw-Hill, New York, 1969).

  22. 22.

    & Nature 305, 309–311 (1983).

  23. 23.

    Earth's Earliest Biosphere (Princeton University Press, New Jersey, 1983).

  24. 24.

    & Biochem. J. 238, 625–642 (1986).

  25. 25.

    Nature 321, 657–658 (1986).

  26. 26.

    J. molec. Evol. 26, 59–73 (1987).

  27. 27.

    , & A. Rev. Biochem. 46, 573–639 (1977).

  28. 28.

    & DeWachter, R. Nucleic Acids Res. 14, 73–118 (1986).

  29. 29.

    , , , & Biochemistry 22, 5858–5868 (1983).

  30. 30.

    , & System Appl. Microbiol. 6, 164–170 (1985).

  31. 31.

    New Phytol. 68, 591–612 (1969).

Download references

Author information

Affiliations

  1. Molecular Biology Institute and Department of Biology, University of California, Los Angeles, California 90024, USA

    • James A. Lake

Authors

  1. Search for James A. Lake in:

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/331184a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.