Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Haemodynamic shear stress activates a K+ current in vascular endothelial cells

Abstract

The endothelial lining of blood vessels is subjected to a wide range of haemodynamically-generated shear-stress forces throughout the vascular system1. In vivo and in vitro, endothelial cells change their morphology2,3 and biochemistry4 in response to shear stress in a force- and time-dependent way, or when a critical threshold is exceeded5'6. The initial stimulus–response coupling mechanisms have not been identified, however. Recently, Lansman et al.7 described stretch-activated ion channels in endothelial cells and suggested that they could be involved in the response to mechanical forces generated by blood flow. The channels were relatively non-selective and were opened by membrane stretching induced by suction. Here we report whole-cell patch-clamp recordings of single arterial endothelial cells exposed to controlled levels of laminar shear stress in capillary flow tubes. A K+ selective, shear-stress-activated ionic current (designated IK.s) was identified which is unlike previously described stretch-activated currents. IK.s varies in magnitude and duration as a function of shear stress (half-maximal effect at 0.70 dyn cm−2), desensitizes slowly and recovers rapidly and fully on cessation of flow. IK.s activity represents the earliest and fastest stimulus–response coupling of haemodynamic forces to endothelial cells yet found. We suggest that localized flow-activated hyperpolarization of endothelium involving IK.s may participate in the regulation of vascular tone.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fry, D. L. Circulation Res. 22, 165–197 (1968).

    Article  CAS  Google Scholar 

  2. Flaherty, J. T. et al. Circulation Res. 30, 23–32 (1972).

    Article  CAS  Google Scholar 

  3. Dewey, C. F. Jr, Bussolari, S. R., Gimbrone, M. A. Jr & Davies, P. F. J. biomech. Engng 103, 177–185 (1981).

    Article  Google Scholar 

  4. Davies, P. F., Dewey, C. F. Jr, Bussolari, S. R., Gordon, E. J. & Gimbrone, M. A. Jr J. clin. Invest. 73, 1121–1129 (1984).

    Article  CAS  Google Scholar 

  5. Frangos, J. A., Eskin, S. G., McIntire, L. V. & Ives, C. L. Science 227, 1477–1479 (1985).

    Article  ADS  CAS  Google Scholar 

  6. Davies, P. F., Remuzzi, A., Gordon, E. J., Dewey, C. F. Jr & Gimbrone, M. A. Jr Proc. natn. Acad. Sci. U.S.A. 83, 2114–2117 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Lansman, J. B., Hallam, T. J. & Rink, T. J. Nature 325, 811–813 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Dewey, C. F. Jr Adv. exp. Med. Biol. 115, 55–103 (1979).

    Article  Google Scholar 

  9. Hille, B. Ionic Channels in Excitable Membranes 111–114 (Sinauer, Sunderland, Mass., 1984).

    Google Scholar 

  10. Olesen, S.-P., Davies, P. F. & Clapham, D. E. Circulation Res. (in the press).

  11. Parnavelas, J. G., Kelly, W. & Burnstock, G. Nature 316, 724–725 (1985).

    Article  ADS  CAS  Google Scholar 

  12. Arfors, K.-E. & Bergquist, D. Thromb. Res. 4, 447–461 (1974).

    Article  CAS  Google Scholar 

  13. Holtz, J., Forstermann, U., Pohl, U., Giesler, M. & Bassenge, E. J. Cardiovasc. Pharmac. 6, 1161–1169 (1984).

    Article  CAS  Google Scholar 

  14. Rhodin, J. A. G. J. Ultrastruct. Res. 18, 181–223 (1967).

    Article  CAS  Google Scholar 

  15. Davies, P. F. Lab. Invest. 55, 5–24 (1986).

    CAS  PubMed  Google Scholar 

  16. Segal, S. S. & Duling, B. R. Circulation Res. 61, II20–II25 (1987).

    Article  CAS  Google Scholar 

  17. Mekata, F. J. Physiol., Lond. 371, 257–265 (1986).

    Article  CAS  Google Scholar 

  18. Furchgott, R. F. & Zawadzki, J. V. Nature 288, 373–376 (1980).

    Article  ADS  CAS  Google Scholar 

  19. Vanhoutte, P. M., Rubanyi, G. M., Miller, V. M. & Houston, D. S. A Rev. Physiol. 48, 307–320 (1986).

    Article  CAS  Google Scholar 

  20. Peach, M. J., Singer, M. A. & Loeb, A. L. Biochem. Pharmac. 34, 1867–1874 (1985).

    Article  CAS  Google Scholar 

  21. Caro, C. G., Fitzgerald, J. M. & Schroter, R. C. Proc. R. Soc. B 177, 109–159 (1971).

    ADS  CAS  Google Scholar 

  22. Ku, D. N., Giddens, D. P., Zarins, C. K. & Glagov, S. Arteriosclerosis 5, 293–301 (1985).

    Article  CAS  Google Scholar 

  23. Sachs, F. in Ionic Channels in Cells and Model Systems (ed. Latorre, R.) 181–193 (Plenum, New York, 1986).

    Book  Google Scholar 

  24. Schwartz, S. M. In Vitro 14, 966–980 (1978).

    Article  CAS  Google Scholar 

  25. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Pflugers Arch. ges. Physiol. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olesen, SP., Claphamt, D. & Davies, P. Haemodynamic shear stress activates a K+ current in vascular endothelial cells. Nature 331, 168–170 (1988). https://doi.org/10.1038/331168a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/331168a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing